Miss. Asama M. Nadaf

M. Sc I Sem I

Microbial Systematics

Month	Week	Topic covered	Teaching Method
July	3	1.1 Species concept in prokaryotes and eukaryotes1.2 Speciation concept	Lecture, Discussion
	4	1.3 5-Kingdom classification system	Lecture, Discussion
August	1	1.4. 3-Domain classification system1.5. History and Approach of development of the Bergey's Manual, and its current status	Lecture, Discussion
	2	1.6. Polyphasic Approach1.7. Molecular clocks, phylogeny and molecular distances	Lecture, Discussion
	3	2.1 Identification of microbes using conventional biochemical methods and genome-based tools.	Lecture, Discussion
	4	2.2 Nomenclature of microbes as per International Code of Nomenclature of Prokaryotes (ICNP)	Lecture, Discussion
September	1	 2.3 Nomenclature of microbes as per the SeqCode. Details about Rule 30 and the reasons for developing the SeqCode 2.4 Discussion and debate from a purely taxonomic perspective on ICNP and SeqCode 	Lecture, Discussion
	2	2.5 Concept of 'List of Prokaryotic names with Standing in Nomenclature' (LPSN) and citing of LPSN.2.6 Use of 'EzTaxon' for naming convention.	Lecture, Discussion
	3	 3.1 Advances in Chemotaxonomy: the insilico approach 3.2 Molecular chronometers in phylogeny: single gene & multigene sequence based microbial typing 	Lecture, Discussion

	4	3.3 Advances in Genome relatedness	Lecture, Discussion
		Indices:	
		• Various databases and their use in Whole	
		genome comparisons.	
		• Tree-building algorithms: distance-matrix	
		methods, minimum evolution, LS,	
		maximum parsimony, maximum likelihood	
		and Bayesian inference	
October	1	4.1 Omics in microbial systematics	Lecture, Discussion
		Metagenomics	
		Metaproteomics	
		Metatranscriptomics	
		Metabolomics	
	2	4.2 Microbial culture collections, Nagoya	Lecture, Discussion
		protocol, NBA and the National Biological	
		Diversity Act for patenting of microbes.	
		4.3 Culture independent molecular methods	
		for identifying unculturable bacteria	
		• PCR	
		• RFLP	
	3	• ARDRA	Lecture, Discussion
		• DGGE	
		• TGGE	
		• RAPD	
	4	•Microarray	Lecture, Discussion
		• FISH	
		• RISA	
		4.4 Strategies for exploring 'unculturable'	
		bacteria	
November		Semester I Theory and Practical	
		Examination	

Miss. Asama M. Nadaf

M. Sc I Sem II

GENETICS AND MOLECULAR BIOLOGY

Month	Week	Topic covered	Teaching Method
December	2	1.1 Origin of life- aspects of prebiotic	Lecture, Discussion
		environment, evolution of the pre-cell.	
		1.2 Organic evolution: concepts and	
		theories, mechanisms of speciation, genetic	
		basis of evolution - Hardy-Weinberg genetic	
		equilibrium, evolutionary clock.	
	3	1.3 Molecular basis- genetic polymorphism	Lecture, Discussion
		and selection, coincidental and	
		concerted molecular basis, gene duplication,	
		sequence divergence,	
		recombination and crossover fixation,	
		pseudo-genes as dead ends of	
		evolution	
		1.4. Origin and evolution of economically	
		important microbes, plants and	
		animals.	
	4	1.5 Evidences for nucleic acids as genetic	
		material	
		1.6 Organization of eukaryotic genetic	
		material: Operon, Unique and repetitive	
		DNA, Interrupted genes, gene families,	
		structure of chromatin and chromosomes,	
		heterochromatin and euchromatin. Polytene	
		and Lampbrush chromosomes.	
January	1	2.1 Principles of Mendelian inheritance:	Lecture, Discussion
		linkage and gene mapping - Tetrad analysis,	
		split and overlapping genes.	
		2.2. Law of DNA constancy and	
		redundancy, C-value paradox, Cot curves	
		and DNA re-association constant, dosage	
		compensation, genetic load.	
	2	2.3 Molecular basis of mitosis and meiosis	Lecture, Discussion
	3	2.4 Replication of DNA and duplication of	Lecture, Discussion
		chromosomes – modes and molecular	
		mechanisms of DNA replication in	
		prokaryotes (bacteria) and eukaryotes	
		(nuclear and mitochondrial).	
	4	2.5 Co-transcriptional and post-	Lecture, Discussion
		transcriptional processing of RNA, structure	
		and stability of Mrna	

February	1	3.1. Translation in eukaryotes – machinery,	Lecture, Discussion
		initiation, elongation, termination and	
		release, posttranslational processing.	
	2	3.2. Localization of proteins in cell -	Lecture, Discussion
		mechanisms of transport to nucleus,	
		mitochondria, chloroplasts and outside the	
		cell.	
	3	3.3 Molecular mechanism of homologous	Lecture, Discussion
		recombination in bacteria and other	
		organisms – RecBCD and Ruv systems,	
		Holliday junction, interallelic, specialized	
		and site specific recombination; Gene	
		targeting.	
	4	3.4. Restriction and modification of DNA –	Lecture, Discussion
		enzymes, molecular mechanisms and	
		significance.	
March	1	4.1 Teratogenesis- chromosome aberrations,	Lecture, Discussion
		genetic disorders; Genetic counseling	
	2	4.2 Transforming viruses, environmental	Lecture, Discussion
		factors causing cancer - carcinogens 2.2	
		Molecular mechanism and sequence of	
		changes leading to oncogenesis - mutations,	
		activation of proto-oncogenes, loss of	
		function of tumour suppressor (anti-cancer)	
		genes, role of apoptosis and telomere	
		shortening in cancer.	
	3	Techniques in molecular genetics:	Lecture, Discussion
		4.3 Basic techniques - PCR, LCR, Nick	
		translation, Blotting techniques – Southern,	
		Northern and Southwestern blotting, colony	
		hybridization	
	4	Applications –	Lecture, Discussion
		4.4 Chromosome walking, DNA foot	
		printing and 16s rRNA sequence analysis	
		4.5 Transfection – Protoplast fusion,	
		electroporation	
April		Semester II Theory and Practical	
		Examination	

Miss. Asama M. Nadaf

M.Sc II Sem III

Medical Microbiology and Virology

Month	Week	Topic covered	Teaching Method
July	3	1.1 Emerging and Reemerging Infectious	Lecture, Discussion
		diseases: Types (NewNew diseases, New-	
		old diseases, Old-new diseases, Old-old	
		diseases)	
		1.2 Modern medicine as a source of New	
		diseases	
	4	1.3 Microbiota shift diseases	Lecture, Discussion
		1.4Germ warfare	
August	1	1.5 Concept of 'Opportunist' and	Lecture, Discussion
		'Continuum' in the development of diseases	
	2	1.6 Measuring Infectivity and Virulence: i)	Lecture, Discussion
		Animal Models:	
		Human volunteers	
		• Non human	
		•animal models	
	3	• ID50 and LD50	Lecture, Discussion
		• Tissue culture models	
		• Organ culture models.	
	4	2.1Colonization and Invasion of bacteria in	Lecture, Discussion
		host surfaces:	,
		Penetrating Intact skin	
		Penetrating Mucin layer	
		Resisting Antibacterial peptides	
September	1	• Adherence (Role of Adherence, pili and	Lecture, Discussion
	_	fimbriae, signal transduction, adhesins of	
		Gram positive bacteria, Afimbrial adhesins)	
		• SIgA Proteases	
		Iron Acquisition mechanisms	
	2	2.2 Common means of colonization of	Lecture, Discussion
		respiratory viruses	,
	3	3.1. Bacterial Exotoxins:	Lecture, Discussion
		Characteristics and Nomenclature	,
		• Exotoxin structure and Functions (A-B/	
		Type III Toxins. Membrane disrupting/	
		Type II Toxins, Superantigens /Type I	
		Toxins)	
		• Secretion and Excretion of Exotoxins	

	4	3.2 Exotoxin Induced Diseases	Lecture, Discussion
		• Diphtheria	
		• Tetanus	
October	1	• Botulism	Lecture, Discussion
		• Medical and cosmetic uses of bacterial exotoxins	
	2	4.1. Emerging viruses challenging health management in India:	Lecture, Discussion
		• SARS-Cov-2 • Nipah	
	3	• Zika	Lecture, Discussion
		• Kyasanur Forest Disease Virus (KFDV)	
		Adeno virus	
	4	2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of,	Lecture, Discussion
		Superficial Mycosis: Pityriasis	
		Subcutaneous Mycoses : Mycetoma	
		Systemic Mycoses: Mucormycosis	
November		Semester III Theory and Practical	
		Examination	

Miss. Asama M. Nadaf

M.Sc II Sem IV

Enzymology and Enzyme Technology

Month	Week	Topic covered	Teaching Method
December	2	1.1 History and special properties of	Lecture, Discussion
		enzymes as catalysts	
		1.2. IUB system of nomenclature and	
		classification of enzyme	
	3	1.3 Specificity of enzymes:	Lecture, Discussion
		a. Types: - substrate and product, group or	
		relative, absolute – stereochemical and	
		spatial specificity	
		b. Theories to explain specificity – Lock	
		and Key and Induced Fit hypotheses	
	4	1.4 Structure of enzymes: monomeric and	
		oligomeric enzymes, Ogsten's experiment	
		and the concept of the Active Site	
		1.5. Methods employed to identify	
		functional groups in the active site –	
		trapping of the intermediate, use of	
		substrate analogues, modification of amino	
		acid side chains, some common functional	
		groups and amino acids, chemistry of the	
		active site	
January	1	1.6 Co-factors in enzyme action: a. Organic	Lecture, Discussion
		– prosthetic groups, coenzymes and	
		cosubstrates b. Inorganic – metal ions in	
		enzyme function, metal activated enzymes	
		and metallo-enzymes, ternary complexes	
	2	2.1. Kinetics of single-substrate enzyme	Lecture, Discussion
		catalysed reactions - Wilhelmy's and	
		Brown's work, Henri and Michaelis-Menten	
		relationships, Briggs and Haldane	
		assumption and derivation, Lineweaver-	
		Burk, Eadie-Hofstee, Hanes and Eisenthal	
		and Cornish-Bowden modifications of the	
		M-M equation to derive KM, Significance	
		of the M-M equation and KM	
	3	2.2 Kinetics of multisubstrate reactions	Lecture, Discussion
		2.3 Haldane's relationship for reversible	
	1	reactions	

		2.4 Sigmoid kinetics – Hill and Adair	
		equations for cooperativity	
	4	3.1 Enzyme inhibition: basic concepts,	Lecture, Discussion
		kinetics, examples and significance of	
		reversible and irreversible inhibition	
February	1	3.2. Ligand induced conformational changes	Lecture, Discussion
		– basic concepts of allosterism and	
		allosteric enzymes, models proposed to	
		explain the mechanism of functioning	
		(MWC and KNF); structural aspects of	
		aspartate carbamoyltransferase, role of	
		allosteric enzymes in metabolic regulation –	
		feedback inhibition.	
	2	3.3 Multienzyme systems – basic concepts,	Lecture, Discussion
		types with examples, structural and	
		functional aspects of pyruvate	
		dehydrogenase, fatty acid synthetase,	
		'Arom' complex and tryptophan synthetase	
	3	3.3 Molecular mechanism of homologous	Lecture, Discussion
		recombination in bacteria and other	
		organisms – RecBCD and Ruv systems,	
		Holliday junction, interallelic, specialized	
		and site-specific recombination; Gene	
	4	targeting.	L (D' '
	4	3.4. Membrane bound enzymes in metabolic	Lecture, Discussion
		regulation	
		5.5. Isoenzymes – basic concepts, method	
		significance	
Marah	1	A 1 1 Applications of angumes in modicine.	Lastura Dissussion
Iviarcii	1	4.1 1. Applications of enzymes in medicine.	Lecture, Discussion
		a. In diagnosis – general principles and use	
		amino transferase lactate dehydrogenase	
		creating kinase acid and alkaling	
		phosphatase	
		b In the rany – specific applications of few	
		selected enzymes, prodrug activation with	
		examples, enzyme replacement therapy	
	2	4.2 Industrial applications of enzymes –	Lecture, Discussion
		catalysts in the manufacturing and other	,
		conversion processes 3. Enzymes as	
		analytical tools	
	3	4.3 Immobilisation of enzymes: basic	Lecture, Discussion
		concepts, methods used, properties of IME	
		and their applications in industry, medicine,	
		enzyme electrodes	
	4	Newer approaches to the application of	Lecture, Discussion
		enzymes – reactions in organic solvents	
April		Semester IV Theory and Practical	
		Examination	

Smt. Priya V. Patil

BSc III Sem V

Food and Industrial Microbiology

Month	Week	Topic covered	Teaching Method
July	3	Food as a substrate for microorganisms: Intrinsic and extrinsic factors	Lecture, Discussion
	4	Sources of microorganisms to food Food spoilage: spoilage wine and beer, spoilage of vinegar	Lecture, Discussion
August	1	General Principles and methods of food preservation	Lecture, Discussion
	2	Determination of: TDP, TDT, D, F, and Z values	Lecture, Discussion
	3	Food poisoning: Role of microorganisms in food poisoning	Lecture, Discussion
	4	Food poisoning: i) Staphylococcal ii) Fungal (aflatoxin)	Lecture, Discussion
September	1	Food infections: food infection: Salmonellosis.	Lecture, Discussion
	2	Probiotics: Concept and applications	Lecture, Discussion
	3	A) Strain ImprovementB) Scale up of fermentationsC) Microbiological assays	Lecture, Discussion
	4	Preservation of industrially important microorganisms: Methods & Culture collection centres.	Lecture, Discussion
October	1	Industrial production of: Alcohol: - Organisms used, Inoculum preparation, Fermentation media, Fermentation conditions, Extraction and Recovery.	Lecture, Discussion
	2	Grape wine: - Definition, types, production of table wine (Red and White) and microbial defects of wine	Lecture, Discussion
	3	Penicillin: - Organisms used Inoculum preparation, Fermentation media, Fermentation conditions, Extraction and Recovery. Concept of semi synthetic penicillin	Lecture, Discussion

	4	Downstream processing & product	Lecture, Discussion
		recovery:	
		Centrifugation, flocculation, filtration,	
		solvent extraction, distillation, precipitation,	
		Crystallization and chromatography.	
		D. Testing of sterility, pyrogen,	
		carcinogenicity, toxicity and allergens	
November		Semester V Examination	

Smt. Priya V. Patil

BSc III Sem VI

Microbial Biochemistry

Month	Week	Topic covered	Teaching Method
December	2	Enzymes - Definition, properties, structure, specificity, mechanism of action (Lock & Key, Induced fit hypothesis), Basics of enzyme classification.	Lecture, Discussion
	3	Allosteric enzymes - Definition, properties, models explaining mechanism of action (Concerted and sequential models). Patterns of feedback inhibition.	Lecture, Discussion
	4	Extraction and purification of enzymes. Methods of extraction of intracellular and extracellular enzymes. Choice of source and biomass development	Lecture, Discussion
January	1	Methods of homogenization - cell disruption methods Purification of enzymes on the basis of - a) Molecular size, b) Solubility differences c) Electrical charge, d) Adsorption characteristic differences e) Differences in biological activity	Lecture, Discussion
	2	Assay of enzymes - Based on substrate and product estimation. Ribozymes and Isozymes. Immobilization of enzymes - Methods and applications	Lecture, Discussion
	3	Factors affecting enzyme activity a) Factors affecting catalytic efficiency of enzymes- i)	Lecture, Discussion

		Proximity and orientation, ii) Strain and	
		distortion, iii) Acid base catalysis, iv) Covalent	
		catalysis	
	4	Environmental factors influencing enzyme	Lecture, Discussion
		activity- i) Substrate concentration,	
		ii) Temperature, iii) pH, iv) Metal ions	
February	1	Kinetics of single substrate-enzyme catalysed	Lecture, Discussion
		reactions - Derivation of Michaelis-Menten	
		equation,	
		Lineweaver Burk Plot, Significance of Km and	
		Vmax.	
	2	Basics in carbohydrate metabolism	Lecture, Discussion
		a) PP pathway, ED pathway, Phosphoketolase	
		pathway	
	3	Pyruvate as a key intermediate	Lecture, Discussion
		c) Glyoxylate bypass	
	4	Assimilation of -	Lecture, Discussion
		a) Carbon	
		b) Nitrogen with respect to N2 and NH3	
		(GOGAT)	
		c) Sulphur	
March	1	Biosynthesis of –	Lecture, Discussion
		RNA	
		DNA	
	2	Proteins,	Lecture, Discussion
		Peptidoglycan	
	3	Regulation of enzyme synthesis.	Lecture, Discussion
		Positive control - Ara operon,	
		Negative control - Lac operon	
	4	Catabolite repression	
April		Semester VI examination	
1			

Smt. Priya V. Patil

BSc II Sem III

Microbial Physiology and Metabolism

Month	Week	Topic covered	Teaching Method
July	3	Growth: Growth phases	Lecture, Discussion
	4	Measurement of growth	Lecture, Discussion
August	1	Continuous growth	Lecture, Discussion
	2	Synchronous growth	Lecture, Discussion
	3	Diauxic growth	Lecture, Discussion
	4	Microorganisms at extreme environment and their strategies- Temperature, pH	Lecture, Discussion
September	1	Osmotic pressure	Lecture, Discussion
	2	Heavy metals	Lecture, Discussion
	3	Radiations	Lecture, Discussion
	4	Transport across cell membrane – Diffusion, active transport and group translocation	Lecture, Discussion
October	1	Catabolism of glucose - EMP, HMP	Lecture, Discussion
	2	ED and TCA cycle	Lecture, Discussion
	3	Fermentation –Homolactic & Heterolactic fermentation	Lecture, Discussion
	4	Bacterial electron transport chain – Components, flow of electrons & mechanism of ATP generation Chemiosmotic hypothesis	Lecture, Discussion
November		Semester III Examination	

Smt. Priya V. Patil

BSc II Sem IV

Applied Microbiology

Month	Week	Topic covered	Teaching Method
December	2	A) Air Microbiology:	Lecture, Discussion
		a) Sources of microorganisms in air.	
		b) Definitions of - Infectious dust, Droplets &	
		Droplet nuclei	
		c) Sampling methods for microbial	
		examination of air	
	3	i) Solid impaction - Sieve device	Lecture, Discussion
		ii) Liquid Impingement – Bead-bubbler device	
	4	B) Microbiology for potable water:	Lecture, Discussion
		a) Sources of microorganisms in water.	
		b) Fecal pollution of water, Indictors of fecal	
		pollution of water – <i>E. coli</i>	
January	1	c) Routine Bacteriological analysis of water.	Lecture, Discussion
		1) SPC & 2) Tests for coliforms -	
	2	i. Qualitative-Detection of coliforms -	Lecture, Discussion
		Presumptive test,	
		Confirmed Test, Completed test.	
	3	Differentiation between	Lecture, Discussion
		Coliforms - IMViC test, Eijkman test.	
		ii. Quantitative – MPN, Membrane filter	
		technique	
	4	d) Municipal water purification process and its	Lecture, Discussion
		significance.	
February	1	C) Milk Microbiology:	Lecture, Discussion
		a) Sources of microorganisms in milk	
		b) General composition of Milk.	
		c) Microbiological examination of Milk –	
		DMC, SPC and dye	
		reduction test- MBRT test	
	2	d) Pasteurization - Definition, Methods – LTH,	Lecture, Discussion
		HTST, UHT,	
	3	Determination of efficiency of Pasteurization-	Lecture, Discussion
		Phosphatase test (Qualitative)	
	4	A) Basic concepts of fermentation.	Lecture, Discussion
		1. Definition, concept of primary and	
		secondary metabolites	
		2. Types of fermentations – Batch, continuous,	
		dual and multiple	

March	1	3. Typical Fermenter design – Parts and their functions.	Lecture, Discussion
	2	4. Factors affecting fermentation process	Lecture, Discussion
	3	B) Screening - Primary and secondary	Lecture, Discussion
		screening	
	4	C) Fermentation Media - Water, carbon source,	Lecture, Discussion
		nitrogen source, Precursors, growth factors,	
		antifoam agents & chelating agents.	
April		Semester VI examination	

Shri. Swapnil B. Patil

BSc III Sem V

Immunology

Month	Week	Topic covered	Teaching Method
July	3	 A) Cells and organs of the immune system: I) Cells of the immune system i. Haematopoiesis- Characteristics and Types of stem cells ii. Classification of cells of immune system- Lymphoid and myeloid cells 	Lecture, Discussion
	4	iii. Structure and functions of Lymphoid cells- T cells and T cell subsets, NK cells, B cells and dendritic cells	Lecture, Discussion
August	1	iv. Structure and functions of myeloid cells– Granulocytes, Monocytes and macrophages	Lecture, Discussion
	2	II) Organs of the immune system Primary and secondary lymphoid organs - Structure and functions of Thymus, bone marrow, spleen, lymph node and Mucosa associated lymphoid tissue (MALT)	Lecture, Discussion
	3	 B) Molecular mechanism of antibody production: i. Processing and presentation of antigen by Antigen presenting cell. ii. Interaction of APC with TH cell 	Lecture, Discussion
	4	 iii. Interaction of B cell and TH cell iv. Proliferation and differentiation of activated B cells v. Role of follicular dendritic cells in selection of high affinity B cells vi. Role of cytokines in proliferation and differentiation 	Lecture, Discussion
September	1	 C) Complement: i. Nature, Properties, Complement activation by classical and alternate pathway. ii. Biological consequences of complement activation 	Lecture, Discussion

	2	D) Monoclonal antibodies:	Lecture, Discussion
		i. Concepts of Polyclonal and monoclonal	,
		antibodies	
		ii Production of mouse monoclonal	
		antibodies by hybridoma technology	
	2	iii Types of monoclonal antibodies. Mouse	Lastura Disquesion
	5	III. Types of monocional antibodies- wouse,	Lecture, Discussion
		Chimeric, Humanized and Human	
		antibodies	
		iv. Applications of monoclonal antibodies.	
	4	A) Cytokines:	Lecture, Discussion
		i. General characters of cytokines	
		ii. Cytokines produced by different TH cells	
		and Macrophages.	
		iii. Effects of cytokines	
October	1	iv. Interferon-properties- types, inducers of	Lecture, Discussion
		Interferon, Mechanism of action- antiviral	
		and immunoregulatory	
	2	B) Hypersensitivity:	Lecture, Discussion
		i. Basic concept. Gell and Coombs	,
		classification	
		ii Type I-Anaphylaxis	
		iii Type II-Blood transfusion reactions	
		iv Type III Serum sickness	
		v. Type III-Serulli siekliess.	
		Allowed type hypersensitivity –	
		Anergy of Infection, Anograft rejection.	
	3	C) Immunological tolerance and	Lecture, Discussion
		Autoimmunity:	
		i. Immunological tolerance	
		a) Natural or self-tolerance and induced	
		tolerance	
		b) Cellular mechanism of immunological	
		tolerance- Central tolerance and peripheral	
		tolerance	
		c) Termination of tolerance	
	4	ii. Autoimmunity:	Lecture, Discussion
	•	a) Concept	200000, 200000000
		b) Autoimmune diseases: Types	
		Immunopathological Mechanisms_	
		Dhoumataid arthritic	
		Treatment of autoimmune discoses	
		freament of autominune diseases	
November		Semester V Examination	

Shri. Swapnil B. Patil

BSc III Sem VI

Medical Microbiology

Month	Week	Topic covered	Teaching Method
December	2	BACTERIAL DISEASES Morphology, cultural and biochemical characteristics, antigenic structure, modes of transmission, pathogenesis, symptoms, laboratory diagnosis, prevention and control of diseases caused by i) <i>Mycobacterium tuberculosis</i>	Lecture, Discussion
	3	ii)Clostridium perfringens	Lecture, Discussion
	4	iii) <i>Treponema pallidum</i>	Lecture, Discussion
January	1	iv)Pseudomonas aeruginosa v)Vibrio cholera	Lecture, Discussion
	2	vi)Staphylococcus aureus vii)Leptospira interrogans	Lecture, Discussion
	3	viii)Klebsiella pneumonia	Lecture, Discussion
	4	 A. Morphology, cultural and biochemical characteristics, antigenic structure, modes of transmission and pathogenesis, symptoms, laboratory diagnosis, prevention and control of diseases caused by 1) Protozoa: Plasmodium falciparum (malaria) 	Lecture, Discussion
February	1	 2) Viruses: i) Hepatitis A & B virus ii) Rabies virus iii)Dengue virus 	Lecture, Discussion
	2	3) Fungus: Candida albicans	Lecture, Discussion
	3	B. Chemotherapy1) Chemoprophylaxis2) General principles of chemotherapy	Lecture, Discussion
	4	 3) Mode of action of antimicrobial agents: a) Antibacterial drugs: Penicillin, Bacitracin, Piperacillin, cycloserine, Streptomycin, Tetracycline, Trimethoprim, Sulphonamides and Quinolones. b) Antiviral drug: AZT, c) Antifungal drugs: Ketoconazole, Griseofulvin, Nystatin d) Antiprotozoal drugs: Metronidazole, Mepacrine 	Lecture, Discussion

March	1	4)Drug resistance: Reasons and Mechanism of drug resistance	Lecture, Discussion
	2	5) Immunoprophylaxis: Vaccines and Immune Sera	Lecture, Discussion
	3	a) Vaccines-live attenuated, inactive, subunit, conjugate and DNA vaccinesb) Immune Sera- examples with applications	Lecture, Discussion
	4	Practical Examination	
April		Semester VI examination	

Teaching plan – 2024-25 Name of the faculty- Dr. Mrudula M. Bendigeri					
M. Sc. I – Sem I – Immunology					
Month	Week	Topic covered	Teaching Method		
July	3	Structure, classes & biological activities of immunoglobulins	Lecture, Discussion		
	4	Organization & expression of immunoglobulin genes	Lecture, Discussion		
August	1	General Organization and Inheritance of the MHC	Lecture, Discussion		
	2	MHC molecules, genes and genetic map	Lecture, Discussion		
	3	Cellular distribution and regulation of MHC	Lecture, Discussion		
	4	MHC immune responsiveness and disease susceptibility	Lecture, Discussion		
September	1	Cytokines	Lecture, Discussion		
	2	Complement system	Lecture, Discussion		
	3	Leucocyte migration	Lecture, Discussion		
	4	Inflammation	Lecture, Discussion		
October	1	Transplantation immunology	Lecture, Discussion		
	2	General and specific immunosuppressive therapy	Lecture, Discussion		
	3	Vaccines and vaccination	Lecture, Discussion		
	4	International standards of vaccines	Lecture, Discussion		
November		EXAM			
	Μ	I. Sc. I – Sem II – Fermentation Techno	ology		
December	2	Basic functions of a fermenter	Lecture, Discussion		
	3	Design of other fermentation vessels	Lecture, Discussion		
	4	Sterilization of fermentation equipment, air and media			
January	1	Fermentation broth rheology and power requirements	Lecture, Discussion		
	2	Fermentation media	Lecture, Discussion		
	3	Fermentation economics	Lecture, Discussion		
	4	Patents	Lecture, Discussion		
February	1	Environmental and genetic control of metabolic pathways	Lecture, Discussion		
	2	Growth and product formation	Lecture, Discussion		
	3	Contamination problems in fermentation industry	Lecture, Discussion		
	4	Computer applications in fermentation technology	Lecture, Discussion		
March	1	Lactic starter culture and Vitamin- B12 fermentation	Lecture, Discussion		
	2	Gluconic acid fermentation	Lecture, Discussion		
	3	Distilled alcoholic beverages	Lecture, Discussion		
	4	Bacterial vaccines	Lecture, Discussion		
April		EXAM	,		

		M. Sc. II – Sem III – Quantitative Biolo	gy
July	3	Basic concepts of biostatistics, collection and	Lecture, Discussion
		presentation of data	
	4	Descriptive statistics, probability, sampling methods	Lecture, Discussion
August	1	Inference about population	Lecture, Discussion
	2	Hypothesis testing	Lecture, Discussion
	3	ANOVA	Lecture, Discussion
	4	Correlation and regression	Lecture, Discussion
September	1	Basic concepts of bioinformatics	Lecture, Discussion
	2	Biological sequence databases	Lecture, Discussion
	3	Bioinformatics tools and applications	Lecture, Discussion
	4	Emerging areas in bioinformatics	Lecture, Discussion
October	1	Bioburden determination	Lecture, Discussion
	2	In process material bioburden determination	Lecture, Discussion
	3	Probability and HACCP	Lecture, Discussion
	4	Thermal Inactivation	Lecture, Discussion
November		EXAM	
December	M.	Sc. II – Sem IV – Food and Dairy Microl Food as a substrate for Microorganisms,	Diology Lecture, Discussion
		General principles underlying microbial spoilage of food	
	3	Microbial spoilage of meat, fruits and vegetables, Microbial spoilage of heated canned food	Lecture, Discussion
	4	General principles and methods of food preservation	
January	1	Milk- definition, composition etc.	Lecture, Discussion
	2	Spoilage of milk and milk products	Lecture, Discussion
	3	Microbiology and biochemistry of fermented foods	Lecture, Discussion
	4	Fermented milk products	Lecture, Discussion
February	1	Food borne diseases	Lecture, Discussion
	2	Prevention and control of food borne diseases	Lecture, Discussion
	3	Fermented dairy products	Lecture, Discussion
	4	Fermented dairy products for gut health	Lecture, Discussion
March	1	Probiotics	Lecture, Discussion
	2	Enzymes in food processing	Lecture, Discussion
	3	Applications of enzymes	Lecture, Discussion
	4	Food safety and standards	Lecture, Discussion
April		EXAM	

Dr. Vidya A Karande

M.Sc I Sem I

Biochemistry

Month	Week	Topic covered	Teaching Method
July	3	i. What is Biochemistry?	Lecture, Discussion
		ii. Goals of Biochemistry.	
		iii. The roots of Biochemistry.	
		iv. Biochemistry as a discipline and an	
		interdisciplinary science.	
		v. Biochemistry as a chemical science.	
		vi. Biochemistry as a biological science.	
		vii. New tools in biological revolution	
		viii. The uses of Biochemistry.	
	4	Common functional groups in biochemistry.	Lecture, Discussion,
		OH,	Assignments
		CHO, $C = 0$, NH2, $C - NH2$, SH, ester,	
		ethers,	
		methyl, ethyl, phospho, guanidio, imidazole	
		etc)	
August	1	Common ring structures in biochemistry	Lecture, Discussion
		Isomerism.	
		Isotopes.	
		Energetics.	
		Redox systems.	
		High energy compounds.	
	2	Nucleic acids:	Lecture, Discussion
		i. Tautomeric forms of bases and their	
		implication in	
		pairing of bases.	
		ii. Structure of polynucleotides, DNA	
		structure, DNA and	
		RNA (t -RNA, r- RNA, m- RNA etc).	.
	3	Structure of DNA double helix.	Lecture, Discussion,
		iv. R and L handed forms.	Assignments
		v. A, B, C and Z forms of DNA.	
		vi. Denaturation and Renaturation of DNA	
		and Im value.	L (D' '
	4	Proteins:	Lecture, Discussion
		1. Structural features of amino acids,	
		classification of	
		amino acids, Amino acids as bullers,	
		11. Henderson Hasselbalch equation and its	
		role in hyffer formulation Dontide linkogo, norticl	
		builer formulation Peptide linkage, partial	
		double bond	
		nature of peptide bond	

September	1	Determination of primary structure of	Lecture, Discussion,
1		polypeptide (N-	, , ,
		terminal. C-terminal determination. method	
		of sequencing of peptides).	
		iv Structural classification of proteins:	
		primary secondary tertiary quaternary	
		structures of proteins	
		v non-covalent interactions	
		Conformational properties	
		of proteins. Polypertide chain geometry	
		Resonance forms of the pentide group	
		cis/trans isomers of pentide	
		group Ramachandran plot (Molecular	
		visualization tools	
		Uniprot)	
	2	Secondary Super-secondary Motif	Lecture Power point
	2	& Domain	nnt
		vii Tertiary and Quaternary structures of	ppr
		proteins	
		(Myoglobin &haemoglobin)	
	3	Membrane transport:	Lecture, Discussion.
	5	Overview of membrane transport.	
		ATP powered pumps and intracellular ionic	
		environment.	
	4	Non gated Ion channels and the resting	Lecture, Discussion
		membrane potential.	Leeture, Discussion
October	1	Co-transport – symport, antiport.	Lecture. Discussion
	-	Neurotransmitters.	
		ATP driven active transport system for	
		Sodium and	
		Potassium ions.	
		Proton gradient in Halobacteria.	
		Transport of antibiotics that increase the	
		ionic	
		permeability of membranes. Co-transport –	
		symport, antiport.	
		Neurotransmitters.	
		ATP driven active transport system for	
		Sodium and	
		Potassium ions.	
		Proton gradient in Halobacteria.	
		Transport of antibiotics that increase the	
		ionic	
		permeability of membranes.	
	2	Carbohydrates:	Lecture, Discussion,
		L forms and D forms of sugar.	power point
		Reducing and non-reducing sugars.	presentation
		Aldoses / ketoses.	
		Alpha and Beta, ring forms of sugars.	
		Glycosidic linkages.	

		Sugar derivatives – sugar alcohol, amino	
		sugars, dextrose	
		sugars, sugar acids	
		Polysaccharides (starch, glycogen,	
		cellulose)	
	3	Lipids:	Lecture, Discussion,
		Fatty acids – Types and nomenclature.	power point
		Saturated and unsaturated fatty acids,	presentation
	4	Structure and function of Triglycerides,	Lecture, Discussion,
		Phospholipids, Sphingolipids.	power point
		Structure and function of steroids, terpenes,	presentation
		prostaglandins.	-
November		Examination	

Dr. Vidya A Karande

N. Sc I Sem II

Quality Control in Pharmaceutical Sector

Month	Week	Topic covered	Teaching Method
December	2	Drug designing and development 15 Hrs	Lecture, Discussion
		Introduction to drug design, computer aided	
		drug design, molecular	
		modeling in drug design – structure-based	
		drug design. General approach in	
		novel drug discovery- new Lead molecule	
		discovery-Lead molecule	
		optimization, Lead molecule modifications-	
		ADME properties of new drug	
		molecule. Mechanism of drug action and its	
		physiochemical principles- drug	
		stereo chemistry, structure activity	
		relationship.	
	3	Comparative modeling of proteins-	Lecture, Discussion
		comparison of 3D structure – Homology	
		– steps in homology modeling – tools	
		(Modeler) –side chain modeling – loop	
		modeling. 3D structure databases-molecular	
		docking – (Auto Dock).	
	4	Introduction to energy minimization, MD	PPT Online demo
		simulation, Setting up MD	lectures
		(System preparation- parameter files),	
		equilibration, Analysis of MD-RMSD,	
		RMSF, Radius of gyration.	
January	1	Microbial synthesis of pharmaceutical	Lecture, Discussion
		products and spoilage 15 Hrs	
		Manufacturing procedures and in process	
		control of pharmaceuticals	
		products. Production of pharmaceutical	
		products- by using microbial	
		fermentations (Streptokinase,	
		Streptodornase).	
	2	Development of new	Lecture, Discussion
		vaccines- DNA vaccines, synthetic peptide	
		vaccines, multivalent subunit	
		vaccines, recombinant vaccine. Vaccine	
		efficacy testing and its clinical	
		trials. Microbial contamination and spoilage	
		of pharmaceutical products	
		(Sterile injectables, non-injectables,	
	3	Quality assurance and product validation	Lecture, Discussion

r			[
		Good Manufacturing Practices (GMP) and	
		Good Laboratory Practices (GLP)	
		in pharmaceutical industry. Quality	
		assurance and quality management in	
		pharmaceuticals ISO 9000, series, practices	
		of GMP WHO, and US	
		certification. Drug stability: parameters for	
		physical stability testing, solution	
		stability, solid stability.	
	4	Sterilization control and sterility testing	Lecture, Discussion
		(For heat	
		sterilization, TDP, TDT, D value, F value, z	
		value,	
February	1	survival curve, Radiation,	Lecture, Discussion
		gaseous and filter sterilization (Mention	
		Tests). Chemical and biological	
		indicators.	
	2	Design and layout of sterile product	Lecture, Discussion
		manufacturing unit	
		Designing of Microbiology laboratory,	
		Industrial Safety:	
	3	Assessment of risk,	Lecture, Discussion
		Industrial hazards and their prevention, fire,	
		accidents, mechanical and electrical	
		equipment's, industrial effluent testing,	
		laboratory standards	
	4	Records and documentations: Records	Lecture, Discussion
		related to products release, Quality	
		review, and Quality audits. Complains and	
		recalls.	
March	1	Intellectual property rights and regulatory	Lecture, Discussion
		practices in pharma industries:	
	2	Intellectual property rights, Introduction to	Lecture, Discussion,
		patents. Regulatory aspects of	PPT
		quality control of pharmaceutical products.	
		IP, BP, USP. Government	
		regulatory practices and policies,	
	3	FDA perspective Reimbursement of drugs	Lecture Discussion
	5	and biologicals legislative perspective	DDT
		Biosensors in Dharmacouticals	111
		(Cholostaral avidasa) Application of	
		microbial anzymas in pharmacauticals	
Amil		Examination	
Aprii	1	Examination	

Dr. Vidya A Karande

M Sc II Sem III

Bioinformatics, Biostatistics and Bionanotechnology

Month	Week	Topic covered	Teaching Method
July	3	Definition and components , databases –	Lecture, Discussion
		definition, biological databases, types	
		and examples, database management	
		systems (DBMS)	
	4	2. Applications of bioinformatics	Lecture, Discussion
August	1	3. Data visualisation – sequence and	Lecture, Discussion
		structure of nucleic acids and proteins, data	
		visualisation tools.	
	2	4. Pattern matching and sequence	Lecture, Discussion
		alignment of nucleic acids and proteins –	
		fundamental principles of pairwise sequence	
		alignment, local and global alignment,	
		multiple sequence alignment, sequence	
		alignment tools and databases.	
	3	Modeling and Simulation –	Lecture, Discussion
		components and process of	
		modeling and simulation,	
	4	Phylogenetic analysis: basic principles and	Lecture, Discussion
		methods of preparation of	
		phylogenetictrees.	
September	1	Biostatistics	Lecture, Discussion
		Basic concepts: definitions – statistics and	
		biostatistics, population, sample, variable	
		and the various types, statistic and	
		parameter	
	2	Definition, Census, Vital statistics	Lecture, Discussion
		Population projection,	
		Population growth and Estimation	
		Vital statistics rate	
	2		I (D' '
	3	Algorithm – Monte Carlo,	Lecture, Discussion
		Metropolis,	
	4	methods and tools used for proteins	Assignments
	-	structure (secondary motifs and domains)	Assignments
October	1	Nonotochnology: Pagia concents	Lecture Discussion
	1	definition Historical background	
		2 Synthesis methods: Top Down and	
		2. Synthesis methods. Top-Down and Bottom Un Approach Dhysical chemical	
		and biological synthesis methods	
1	1	and biological synthesis methods,	

	2	Newskieterstern Istanlandian Care	Later Diamatica
	2	Nanobiotechnology- Introduction, Green	Lecture, Discussion
		synthesis- Microbial synthesis (Bacteria,	
		Fungi, Algae, Virus)	
	3	Analysis of Nanomaterials: Methods and	Lecture, Discussion
		characterization techniques-UV-Visible	
		spectroscopy, FT-IR Spectroscopy, X ray	
		Crystallography, Dynamic Light Scattering	
		(DLS) spectroscopy, Zeta potential	
		spectroscopy,	
	4	Energy Dispersive X-Ray Analysis	Lecture, Discussion
		(EDAX), Transmission Electron	
		Microscope (TEM), Scanning Electron	
		Microscope (SEM), Scanning Tunneling	
		Microscope (STM), Atomic Force	
		Microscope (AFM)	
November		Examination	

Dr . Vidya A Karande

M.Sc II Sem IV

Molecular Biology Tools and Applications

Month	Week	Topic covered	Teaching Method
December	2	1. Enzymes: restriction endonucleases,	Lecture, Discussion
		exonucleases – DNA and RNA; DNA	
		polymerases, DNA ligases, alkaline	
		transferase, terminal transferase, feverse	
		2 Linkers and adaptors	
		2. Linkers and adaptors 3. Cloning vehicles (vectors):	
		5. Cloning venicles (vectors).	
	3	Desirable features of ideal cloning vehicles	Lecture, Discussion
		Plasmids: - pUC, pBR322 and its	
		derivatives, IncP-group, Viral based: - λ	
		phage – basic and derivative vectors, M13,	
		f1, fd	
	4	other viruses - addition, self- inactivating,	
		helper dependent and helper-independent	
		Cosmids, phasmids, phagemids	
January	1	Specialist purpose vectors: - M13 based,	Lecture, Discussion
		expression, shuttle, gene inactivation,	
		integrative, RNA probe and RNAi vectors,	
		strong	L (D' '
	2	Artificial chromosomes: - BAC, YAC, PAC	Lecture, Discussion
	3	4. Gene probes: development and labeling	Lecture, Discussion
		of DNA and RNA probes	,
	4	promoter vectors, purification tag vectors,	Lecture, Discussion
		protein solubilisation vectors, secretion	
		vectors	
February	1	Basic Cloning Strategies	Lecture, Discussion
		General principles: DNA	
		fragmentation, ligation to vectors,	
		introduction into the host cell, cell	
		based and PCR based strategies	
	2	2. Cloning in <i>Escherichia coli</i> and other	Lecture, Discussion
	2		
	3	a. Construction of genomic libraries –	Lecture, Discussion,
		Manialis Strategy, EMBL 3A vector	ppı
	4	Strategy	Lastura Dissussion
	4	Construction of complementary DNA	Lecture, Discussion
		(CDNA) libraries – Maniaus nairpin-	
		primed second-strand DNA synthesis,	
	1	ongo-uc tan memou, the Gubbler-	

	1		
		Hoffman method, direction cDNA	
		cloning, plasmid-linked cDNA synthesis,	
		CAPture method	
March	1	Screening of gene libraries: hybridization,	Lecture, Discussion
		PCR, Immunochemical, Protein-protein	
		interactions, Protein-ligand interaction,	
		functional complementation, gain of	
		function 4. Expression of foreign DNA in	
		transformed bacteria	
	2	Cloning in Eukaryotes	Lecture, Discussion
		1. Cloning in yeast and fungi:	,
		Vector systems: YEp. YCp. YAC, modular	
		expression vector, veast secretion vector	
		(pGAP), introduction of DNA, selectable	
		markers Heterologous protein production –	
		source of DNA. level of heterologous RNA.	
		amount of proteinproduced nature of	
		product	
	3	Cloning in animals.	Lecture. Discussion
	C	Vectors systems: plasmid-based vectors -	200000, 210000000
		pSV2-dhfr. pRSV-neo_virus-based vectors	
		- adenovirus adeno-associated	
		baculovirus, herpes virus, retrovirus	
		Sindhis and Semliki Forest disease virus	
		vaccinia and pox virus EB virus	
		vaccinia and pox viras, LD viras	
	4	Cloning in Plants:	Lecture. Discussion
	-	Vectors systems: Ti plasmid of	
		Agrobacterium tumefaciens and Ri	
		plasmid of Ag. Rhizogenes, viruses –	
		caulimovirus geminivirus BMV	
		TMV PVX	
		Cloning in Plants: Agrobacterium-	
		mediated gene transfer, direct DNA	
		transfer, gene targeting, inplanta	
		transformation	
		Applications of rDNA Technology	
April		Examination	