Shri Acharyaratna Deshbhooshan Shikshan Prasarak Mandal, Kolhapur Mahavir Mahavidyalaya, Kolhapur (Autonomous) Affiliated to Shivaji University, Kolhapur

Syllabus for Choice Based Credit System (CBCS) Bachelor of Science (B. Sc.) Programme

I alt III Course Microbiology	Part III Course Microbio
-------------------------------	--------------------------

Under the Faculty of Science & Technology

(To be introduced from Academic Year 2023 – 24 onwards) Subject to the revisions& modifications made from time to time

Mahavir Mahavidyalaya, Kolhapur (Autonomous) Affiliated to Shivaji University, Kolhapur

(New syllabus under Autonomy to be introduced from June, 2023 onwards)

Primary Information:				
Programme	Bachelor of Science (B. Sc.) CBCS			
Part	III	Semester	V	
Course	Microbiology	Course Code	DSC	
Paper No.	IX	Course Type	Semester	
Total Marks	50 Marks	Implementation	2023 - 24	
Total Credits	02	Contact Hours	3 / Week	
Course Title	Virology			

Course Objectives:			
i)	To Understand the basic structure of Viruses.		
ii)	To Understand Isolation, cultivation and purification of viruses		
iii)	To Understand reproduction of viruses		
iv)	To Understand basic concept of oncogenesis.		

Course Syllabus

(CR = Credits / IH: Instructional Hours)

(CR = Credits / IH: Instructional Hours)		
Modules	CR	IH
Module I :		
1) The Structural properties of viruses: Capsids, Nucleic		
acids and envelope. Structure of T4 bacteriophage, TMV and		
HIV, Viroids and prions.		
2) Reproduction of Bacteriophages :		
a) One step growth experiment.		
b) Reproduction of T4 phage.		
3) Isolation, cultivation and Purification of viruses		
a) Isolation and cultivation of viruses:		
i) Animal virus - Tissue culture, chick embryo and live	01	23
animals	01	23
ii) Plant virus – Whole plant, Protoplasts, Insect cell culture		
iii) Bacteriophages - Plaque method		
b) Purification of viruses based on physico-chemical		
properties:		
i) Density gradient centrifugation		
ii) Precipitation		
4) Methods of Enumeration of viruses		
i) Latex droplet method (Direct electron microscopic count)		
ii) Plaque and pock assay method		

Module II :		
1) Lysogeny		
a) Introduction		
i)Definition of lysogeny		
ii)Temperate phages		
b) Lysogeny by lambda phage		
i)Adsorption and penetration of λ phage		
ii)Circularization of lambda genome		
iii)Genetic map for lysogenic interaction		
iv)Expression of λ genes		
v)Establishment of repression		
vi)Maintenance of repression		
vii)Integration of λ genome into host genome		
2) Reproduction of animal virus - Adenovirus.		
3) Reproduction of plant virus – TMV	01	22
4) Oncogenesis:		
a) Definition of oncogenesis		
b) Types of cancers		
c) Characteristics of cancer cells.		
d) Hypothesis about cancer.		
i) Somatic mutation hypothesis		
ii) Defective immunity hypothesis		
iii) Viral gene hypothesis		
e)Role of DNA viruses in cancer with special emphasis on		
Papova viruses.		
f) Role of RNA tumor viruses		
g) Provirus theory		
h) Protovirus theory		
i) Oncogene theory		

Course Outcomes:	
On complication of course, student will be able to :	
1] Know the basic structure of viruses	
2] Understand isolation, cultivation and purification of viruses	
3] Know the Reproduction of viruses	
4] Understand the types of cancer	

Primary Information:					
Programme	Bachelor of Scien	Bachelor of Science (B. Sc.) CBCS			
Part	III	Semester	V		
Course	Microbiology	Course Code	DSC I2		
Paper No.	X	Course Type	Semester		
Total Marks	50 Marks	Implementation	2023 - 24		
Total Credits	02	Contact Hours	3/Week		
Course Title	Immunology				

000==1			
i)	To understand cells of immune system		
ii)	To understand compliment fixation		
iii)	To study monoclonal antibodies production		
iv)	To study concept of cytokines and Hypersensitivity		

Course Syllabus		
(CR = Credits / IH: Instructional Hours)		
Modules	CR	IH
Module I :		
A) Cells and organs of the immune system:		
I) Cells of the immune system		
i. Hematopoiesis- Characteristics and Types of stem cells		
ii. Classification of cells of immune system-Lymphoid and		
myeloid cells		
iii. Structure and functions of Lymphoid cells- T cells and T		
cell subsets, NK cells, B cells and dendritic cells		
iv. Structure and functions of myeloid cells – Granulocytes,		
Monocytes and macrophages		
II) Organs of the immune system		
Primary and secondary lymphoid organs - Structure and	01	22
functions of Thymus, bone marrow, spleen, lymph node and	01	
Mucosa associated lymphoid tissue(MALT)		
B) Molecular mechanism of antibody production:		
i. Processing and presentation of antigen by Antigen presenting		
cell.		
ii. Interaction of APC with TH cell		
iii. Interaction of B cell and TH cell		
iv. Proliferation and differentiation of activated B cells		
v. Role of follicular dendritic cells in selection of high affinity		
B cells		
vi. Role of cytokines in proliferation and differentiation		
C) Complement:		
i. Nature, Properties, Complement activation by classical and		

		r
alternate pathway.		
ii. Biological consequences of complement activation		
D) Monoclonal antibodies:		
i. Concepts of Polyclonal and monoclonal antibodies		
ii. Production of mouse monoclonal antibodies by hybridoma		
technology.		
iii. Types of monoclonal antibodies- Mouse, Chimeric,		
Humanized and Human antibodies		
iv. Applications of monoclonal antibodies.		
Module II :		
A) Cytokines:		
i. General characters of cytokines		
ii. Cytokines produced by different TH cells and Macrophages.		
iii. Effects of cytokines		
iv. Interferon-properties- types, inducers of Interferon,		
Mechanism of action- antiviral and immunoregulatory		
B) Hypersensitivity:		
i. Basic concept ,Gell and Coombs classification		
ii. Type I-Anaphylaxis		
iii. Type II-Blood transfusion reactions		
iv. Type III-Serum sickness.		
v. Type IV- Delayed type hypersensitivity –Allergy of	01	23
infection, Allograft rejection.		
C) Immunological tolerance and Autoimmunity:		
i. Immunological tolerance		
a) Natural or self tolerance and induced tolerance		
b) Cellular mechanism of immunological tolerance- Central		
tolerance and peripheral tolerance		
c) Termination of tolerance		
ii. Autoimmunity :		
a) Concept		
b) Autoimmune diseases: Types, Immunopathological		
mechanisms-Rheumatoid arthritis,		
Treatment of autoimmune diseases		
		I

Course Outcomes:
On complication of course, student will be able to :
1] know the cells of immune system
2] understand compliment fixation
3] know the monoclonal antibodies production
4] know the concept of cytokines and Hypersensitivity

Primary Information:				
Programme	Bachelor of Science (B. Sc.) CBCS			
Part	III	Semester	V	
Course	Microbiology	Course Code	DSC I3	
Paper No.	XI	Course Type	Semester	
Total Marks	50 Marks	Implementation	2023 - 24	
Total Credits	02	Contact Hours	3/Week	
Course Title	Food and Industr	rial Microbiology		

Cour	
i)	To Understand food spoilage
ii)	To Understand food poisoning
iii)	To Understand basic concept of probiotic and application
iv)	To study fermentation process and production

Course Syllabus			
(CR = Credits / IH: Instructional Hours)			
Modules	CR	IH	
Module I:			
 1) Food Microbiology a) Food as a substrate for microorganisms: Intrinsic and extrinsic factors b) Sources of microorganisms to food c) Food spoilage: spoilage wine and beer, spoilage of vinegar d) General Principles and methods of food preservation e) Determination of: TDP, TDT, D, F, and Z values f) Food poisoning: a. Role of microorganisms in food poisoning b. Food poisoning: i) Staphylococcal ii) Fungal (aflatoxin) g) Food infections: food infection: Salmonellosis. h) Probiotics: Concept and applications 2) Industrial Microbiology A) Strain Improvement B) Scale up of fermentations C) Microbiological assays 	01	22	

Module II: 1) Industrial Microbiology A. Preservation of industrially important microorganisms: Methods & Culture collection centers.		
 B. Industrial production of: a. Alcohol: - Organisms used, Inoculum preparation, Fermentation media, Fermentation conditions, Extraction and Recovery. b. Grape wine: - Definition, types, production of table wine (Red and White) and microbial defects of wine c. Penicillin: - Organisms used Inoculum preparation, Fermentation media, Fermentation conditions, Extraction and Recovery. Concept of semi synthetic penicillin 	01	23
C. Downstream processing & product recovery : Centrifugation, flocculation, filtration, solvent extraction, distillation, precipitation, Crystallization and chromatography.		
D. Testing of sterility, pyrogen, carcinogenicity, toxicity and allergens		

Course Outcomes:
On complication of course, student will be able to :
1] Know the details of food spoilage
2] Understand role of microorganism in food poisoning
3] know the application of Probiotic
4]Understand the microbial production of fermented product

Primary Information:					
Programme	Programme Bachelor of Science (B. Sc.) CBCS				
Part	III	Semester	V		
Course	Microbiology	Course Code	DSC I4		
Paper No.	XII	Course Type	Semester		
Total Marks	50 Marks	Implementation	2023 - 24		
Total Credits	02	Contact Hours	3/ Week		
Course Title	Agricultural Mic	robiology			

i)	To Understand characteristics of soil and role of microorganism
ii)	To Understand microbial interaction in soil
iii)	To study Biofertilizer production
iv)	To study various plant disease

Course Syllabus				
(CR = Credits / IH: Instructional Hours)				
Modules	CR	IH		
Module I:				
 Soil Microbiology a. Physical characters. 				
b. Chemical characters.				
c. Types of microorganisms in soil and their role in soil fertility.				
d. Microbiological interactions - Symbiosis, Commensalism, Amensalism, Parasitism, and Predation.				
2) Role of microorganisms in elemental cyclesa. Carbon cycle.				
b. Nitrogen cycle				
c. Phosphorous cycle				
3) Role of Microorganisms in reclamation of soil.				
I) Manure and Compost		22		
Methods of Production:				
a) Green manure and farm yard manure				
b) City compost- Windrow and pit method.				
c) Vermicompost				
II) Optimal conditions for composting with reference to -				
Composition of organic waste, Availability of microorganisms,				
Aeration, C:N:P ratio, Moisture content, Temperature, pH and				
Time.				
III) Standards of City Compost and Vermicompost as per				
Fertilizer Control Order.				

Module II:		
1) Types, production, methods of application and uses of :		
A) Biofertilizers		
i) Nitrogen fixing - Azotobacter, Rhizobium, and Azospirillum.		
ii) Phosphate Solubilizing Microorganisms.		
B) Biopesticides		
a) Bacillus thuringiensis		
b) Tricoderma spp.		
c) Beauveria bassiana		
2) Biodegradation of :	01	23
a) Cellulose	01	25
b) Pesticides		
3) Plant Pathology:		
a) Common symptoms produced by plant pathogens		
b) Modes of transmission of plant diseases.		
c) Plant diseases :		
i) Citrus Canker		
ii) Tikka disease of groundnut		
iii) Bacterial Blight of Pomegranate.		

Course Outcomes:	
On complication of course, student will be able to :	
1] To know the physical, chemical characteristics of soil microbiology	
2] To understand plant microbial interaction	
3] To know the types, production, techniques of Biofertilizer	
4] To understand Types, symptom and mode of transmission of plant diseases	

Primary Information:				
Programme Bachelor of Science (B. Sc.) CBCS				
Part	III	Semester	VI	
Course	Microbiology	Course Code	DSC I4	
Paper No.	XIII	Course Type	Semester	
Total Marks	50 Marks	Implementation	2023 - 24	
Total Credits	02	Contact Hours	3/Week	
Course Title	Microbial Geneti	cs	·	

Course Objectives:				
i)	To understand chromosomal structure of <i>E.coil</i>			
ii)	To Understand Mutation			
iii)	To Study molecular techniques and applications			
iv)	To understand Genetic engineering			

Course Syllabus			
(CR = Credits / IH: Instructional Hours)			
Modules	CR	IH	
Module I:			
1) Basic concepts of bacterial genome -			
a) Structural organization of E. coli chromosome - Folded			
Fiber model.			
b) One cistron - one polypeptide hypothesis.			
2) Molecular mechanism of gene expression			
a) Concept of operon			
b) Pribnow box			
c) Genetic regulation in tryptophan operon			
3) Mutations	01	22	
a) Expression of mutations -			
i) Time course of phenotypic expression.			
ii) Conditional expression of mutation.			
b) Suppressor mutations (with examples) - Genetic and non- genetic.			
4) Methods of isolation and detection of mutants based on -			
a) Relative survival			
b) Relative growth			
c) Visual detection			

Module II:		
1) Genetic complementation - Cis-trans test		
2) Extrachromosomal inheritance :		
a) Kappa particles.		
b) Transposable elements - general properties and types.		
3) Techniques in Molecular Biology –		
a) DNA sequencing (Sanger's method)		
b) DNA Finger printing		
c) PCR		
4) Genetic engineering		
a) Introduction		
b) Tools of genetic engineering –		
i) Enzymes		
ii) Vectors-phage, plasmid and cosmid		
iii) DNA probe	01	23
iv) Linkers and adaptors	01	25
v) Cloning organisms - (Bacteria and Yeasts)		
vi) Genomic library and cDNA library		
c) Techniques –		
i) Isolation of desired DNA segment- Shotgun Method, cDNA		
synthesis, Chemical		
synthesis		
ii) Construction of r-DNA using appropriate vector- Use of		
restriction enzymes,		
Linkers, Adaptors, Homopolymer tails		
iii) Transfer to cloning organisms (Bacteria and Yeasts)		
iv) Selection of recombinant bacteria and yeasts – Blue and		
white screening, Colony		
hybridization technique.		
d) Application of genetic engineering in –		
i) Medicineii) Agriculture		
iii) Industry		
iv) Environment		

Course Outcomes:
On complication of course, student will be able to :
1] To know the chromosomal structure of <i>E.coil</i>
2] Understand types of mutation and methods to isolates mutants
3] Understand principle working and application of molecular biology techniques
4] To know the tools and techniques used in Genetic engineering

Primary Information:				
Programme	Programme Bachelor of Science (B. Sc.) CBCS			
Part	III	Semester	VI	
Course	Microbiology	Course Code	DSC I4	
Paper No.	XIV	Course Type	Semester	
Total Marks	50 Marks	Implementation	2023 - 24	
Total Credits	02	Contact Hours	3/Week	
Course Title Microbial Biochemistry				

Cour	course objectives.		
i)	To study the basic concept of Enzymes and its Kinetics		
ii)	To Study regulation of enzyme synthesis		
iii)	To study Biosynthesis of DNA, RNA, protein and peptidoglycan		
iv)	To study Carbohydrates metabolism		

Course Syllabus				
(CR = Credits / IH: Instructional Hours)				
Modules	CR	IH		
Module I:				
 Enzymes - A) Definition, properties, structure, specificity, mechanism of action (Lock & Key, Induced fit hypothesis), Basics of enzyme classification. B) Allosteric enzymes - Definition, properties, models explaining mechanism of action (Concerted and sequential models). Patterns of feed back inhibition. Extraction and purification of enzymes. A) Methods of extraction of intracellular and extracellular enzymes. B) Methods of homogenization - cell disruption methods C) Purification of enzymes on the basis of - a) Molecular size, b) Solubility differences c)Electrical charge, d) Adsorption characteristic differences e) Differences in biological activity Assay of enzymes - Based on substrate and product estimation. Ribozymes and Isozymes. Immobilization of enzymes - Methods and applications 	01	22		

Module II:		
1) Factors affecting enzyme activity a) Factors affecting		
catalytic efficiency of enzymes- i) Proximity and orientation,		
ii) Strain and distortion, iii) Acid base catalysis, iv) Covalent		
catalysis		
b) Environmental factors influencing enzyme activity-		
i)Substrate concentration,		
ii) Temperature, iii) pH, iv) Metal ions		
2) Kinetics of single substrate-enzyme catalyzed reactions -		
Derivation of Michaelis-Menten equation,		
Lineweaver Burk Plot, Significance of Km and Vmax.		
3) Microbial Metabolism		
I) Basics in carbohydrate metabolism	01	23
a) PP pathway, ED pathway, Phosphoketolase pathway		
b) Pyruvate as a key intermediate		
c) Glyoxylate bypass		
II) Assimilation of -		
a) Carbon		
b) Nitrogen with respect to N2 and NH3 (GOGAT)		
c) Sulphur		
4) Biosynthesis of -		
a) RNA, b) DNA, c) Proteins, d) Peptidoglycan		
5) Regulation of enzyme synthesis. i) Positive control - Ara operon, ii) Negative control - Lac operon iii) Catabolite repression		

Course Outcomes:	
On complication of course, student will be able to :	
1] To know the concept of enzymes	
2] To understand Regulation of enzyme synthesis	
3] The course cover the basics DNA, RNA, protein and peptidoglycan	
biosynthesis	
4] To understand basic carbohydrates metabolism	

Primary Information:				
Programme	Programme Bachelor of Science (B. Sc.) CBCS			
Part	III	Semester	VI	
Course	Microbiology	Course Code	DSC I4	
Paper No.	XV	Course Type	Semester	
Total Marks	50 Marks	Implementation	2023 - 24	
Total Credits	02	Contact Hours	3/Week	
Course Title Environmental Microbiology				

	J
i)	To study general characteristics of liquids ,solid waste as per MPCB
ii)	To study sewage microbiology and characteristics
iii)	To study basic purpose of environment monitoring along with biological
	safety measures
iv)	To understand environment impact assessment ,bioremediation and
	bioleaching

Course Syllabus		
(CR = Credits / IH: Instructional Hours)		
Modules	CR	IH
Module I:		
1) General characteristics of waste) Liquid waste - pH,		
electrical conductivity, COD, BOD, total solids, total dissolved		
solids, total suspended solids, total volatile solids, chlorides, sulphates, oil & grease.		
b) Solid waste- pH, electrical conductivity, total volatile solids, ash.		
c) Standards as per MPCB.		
2) Sewage Microbiology		
a) Physico-chemical and Biological characteristics		
b) Treatment	01	
i)Biological treatment: Trickling filter, Activated sludge		22
process, Oxidation ponds, Anaerobic digestion, Septic tank,		
Root zone technology		
ii) Chemical treatment – Chlorination		
3) Characteristics and treatment of waste generated by		
a) Sugar Industry		
b) Distillery		
c) Dairy Industry		
d) Hospital		
4) Eutrophication		
a) Classification of lakes		
b) Sources		

c) Consequences		
d) Control		
Module II:		
1) Biological safety in laboratory		
a) Good Laboratory Practices		
b) Bio safety levels (BSL)		
2) Environmental monitoring		
a) Definition and purpose		
b) Cleanroom classification		
c) Routine Environmental monitoring programme in		
pharmaceutical industries- Airmonitoring, Surface monitoring		
and Personnel monitoring.		
d) Bioburden test		
5) Environmental Impact Assessment- Concept and Brief		
introduction	01	23
A) Diamana diatian and Dialasahing		
4) Bioremediation and Bioleachinga) Bioremediation		
i) Definition		
ii) Types		
iii) Applications.		
b) Bioleaching		
i) Introduction		
ii) Microorganisms involved		
iii) Chemistry of Microbial leaching		
iv) Laboratory scale and pilot scale leaching		
v) In situ leaching - Slope, heap		
vi) Leaching of Copper and Uranium		

Course Outcomes:

On complication of course , student will be able to :

1] To know the concept characteristics of liquids ,solid waste as per MPCB

2]This point cover sewage microbiology and characteristics

3] To understand environment monitoring along with biological safety measures

4] To understand concept importance and application of environment impact assessment

Primary Information:				
Programme	Programme Bachelor of Science (B. Sc.) CBCS			
Part	III	Semester	VI	
Course	Microbiology	Course Code	DSC I4	
Paper No.	XVI	Course Type	Semester	
Total Marks	50 Marks	Implementation	2023 - 24	
Total Credits	02	Contact Hours	3/ Week	
Course Title	Medical Microbi	ology		

i)	To understand various bacterial disease	
ii)	To study viral, fungal and protozoa diseases	
iii)	To understand general principle of chemotherapy	
iv)	To understand mode of action of antimicrobial agents	

Course Syllabus			
(CR = Credits / IH: Instructional Hours)			
Modules	CR	IH	
Module I:			
BACTERIAL DISEASES Morphology, cultural and biochemical characteristics, antigenic structure, modes of transmission, pathogenesis, symptoms, laboratory diagnosis, prevention and control of diseases caused by i) <i>Mycobacterium tuberculosis</i> ii) <i>Clostridium perfringens</i> iii) <i>Treponema pallidum</i> iv) <i>Pseudomonas aeruginosa</i> v) <i>Vibrio cholera</i> vi) <i>Staphylococcus aureus</i> vii) <i>Leptospira interrogans</i> viii) <i>Klebsiella pneumonia</i>	01	23	
Module II:			
 A. Morphology, cultural and biochemical characteristics, antigenic structure, modes of transmission and pathogenesis, symptoms, laboratory diagnosis, prevention and control of diseases caused by 1) Protozoa : Plasmodium falciparum (malaria) 2) Viruses : i) Hepatitis A & B virus ii) Rabies virus iii)Dengue virus 3) Fungus: <i>Candida albicans</i> 	01	22	

B. Chemotherapy	
1) Chemoprophylaxis	
2) General principles of chemotherapy	
3) Mode of action of antimicrobial agents:	
a) Antibacterial drugs: Penicillin, Bacitracin, Piperacillin,	
cycloserine, Streptomycin, Tetracycline, Trimethoprim,	
Sulphonamides and Quinolones.	
b) Antiviral drug : AZT,	
c) Antifungal drugs: Ketoconazole, Griseofulvin, Nystatin	
d) Antiprotozoal drugs: Metranidazole, Mepacrine	
4)Drug resistance: Reasons and Mechanism of drug resistance	
5) Immunoprophylaxis: Vaccines and Immune Sera	
a) Vaccines-live attenuated, inactive, subunit, conjugate and	
DNA vaccines	
b) Immune Sera- examples with applications	

Course Outcomes:
On complication of course, student will be able to :
1] know the pathogenesis symptoms and treatment of various disease
2] Understand viral, fungal and protozoa diseases
3] know the general principle of chemotherapy
4] Understand mode of action of antimicrobial agents

- To understand various techniques and practical procedures followed in virology and genetics
- To understand microbial bioassay.
- To understand estimation of carbon, Magnesium, calcium from soil sample.
- To understand the isolation of pathogen and their biochemical tests.

Course Syllabus		
(CR = Credits / IH: Instructional Hours)		
Modules	CR	IH
Practical - I (Virology and Microbial Genetics)		
Major :		
1. Isolation of coliphages from sewage.		
2. Effect of U.V. light on bacteria and graphical presentation of result.		
3. Isolation of auxotrophic mutants by replica plate		
technique		
4. Transfer of genetic material by transformation in E.coli		
5. Isolation of chromosomal DNA from bacteria (J. Marmurs		
method or by Phenol chloroform method)		
Minor :		
1. Electrophoretic separation of DNA.		
2. Isolation of streptomycin - resistant mutants (gradient		
plate technique)		
3. Testing of carcinogenicity of a substance by Ame's test		
Practical - II (Food and Industrial Microbiology)		
Major :		
1. Assay of amylase by DNSA method (graphical		
estimation)		
2. Bio-assay of Vitamin B12		
3. Bio-assay of Penicillin.		
Minor:		
1. Production of wine and examination for pH, colour and		
alcohol content.		
2. Citric acid fermentation, recovery and estimation by		
titration.		
3. Amylase production by using Bacillus species.		
4. Isolation of lactic acid bacteria from fermented food.		
5. Examination of milk by Direct microscopic count (DMC)		

Practical - III (Agricultural and Environmental Microbiology) Major :	
 Isolation of <i>Azotobacter</i> from soil. Isolation of <i>Xanthomonas</i> from infected citrus fruit. Isolation of <i>Rhizobium</i> from root nodules. 	
 Isolation of <i>Rhizobium</i> from root notifies. Isolation of phosphate solublising bacteria from soil. Determination of BOD of sewage 	
 Minor : 1. Estimation of Calcium and Magnesium from soil (EDTA method) 2. Determination of organic carbon content of soil (Walkley and Black method) 3. Determination of COD of sewage. 	
Practical - IV Medical Microbiology Major : 1. Isolation of following pathogens from clinical samples (wherever possible) and identification of the same by morphological, cultural and biochemical characteristics. a) Pseudomonas aeruginosa b) Staphylococcus aureus c)Candida albicans 2. Determination of MIC of streptomycin against E.coli by broth method	
Minor : 1. Determination of sensitivity of common pathogens to antibiotics by paper disc method. 2. Serological tests: a) Widal test -Quantitative b) Rapid Diagnostic Test for Malaria c)DemonstrationofEnzymeLinkedImmunosorbentAssay(ELISA)	
 3. Haematology: a) Estimation of haemoglobin by Sahli's method b) Determination of ESR of the blood sample(Wintrobe method) c) Determination of PCV d) Total and differential blood cells count. 	
4. Urine analysis: Physical and chemical examination of urine.a) Microscopic examination of urine-crystals, RBCs, pus cells and bacteria.	

- b) Test for protein (Acetic acid test)c) Test for ketone bodies (Rothra'stest)d) Test for bile salt and bile pigments.
- e) Test for sugar (Benedict's method)

Course Outcomes:

On complication of course, student will be able to :

Know the isolation of colipande and DNA from bacteria

Understand the bioassay

Know the isolation of bio fertilizer

Understand the estimation of Carbon, Calcium, Magnesium

Know the pathogens and their cultural and biochemical characteristics

Reference	Materials	-

Books for Reference		
1.	Practical Biochemistry - Plummer	
2.	Soil, Plant, and Water Analysis – P. C. Jaiswal	
3.	Medical Lab Technology – Ramnik and Sood	
4.	Biochemical methods – S. Sadasivam, A. Manickam	
5.	5. Chemical and biological analysis of water - Dr. R. K. Trivedy and P. K.	
	Goel	

Suggested methods of Teaching:		
i)	Offline Traditional Board Teaching	
ii)	Power Point Presentation	
iii)	ii) Online Teaching on platform of Zoom or Google Meet	

Scheme of Course Evaluation		
1.	End Semester Examination (ESE)	40
2.	Continuous Internal Evaluation (CIE)	10
3.	Total Marks	50

Suggested techniques for Continuous Internal Evaluation (10 Marks)		
1.	Seminar	
2.	Field Report	
3.	Assignments	
4.	Open book test	
5.	Offline / online MCQ test	
6.	Diagram test	
7.	Visit/Tour report	
8.	Surprise test	

Question	Question Paper Pattern (40 Marks) Theory Exam			
Q. No.	Nature / Type of Question	Marks		
1.	Multiple Choice Questions (MCQ)	6 Marks		
	6 Questions	(1 Marks for each		
		question)		
2.	Write answers in short	10Marks		
	5 Questions	(2 Marks for each		
		question)		
3.	Write Short Notes	12Marks		
	Attempt any 3 out of 5 questions	(4 Marks for each		
		question)		
4.	Write descriptive question	6 Marks		
	Attempt any 1 out of 2 questions			
5.	Write descriptive question	6 Marks		
	Attempt any 1 out of 2 questions			
6.	Total Marks	40		

Practical Examination

(A) The practical examination will be conducted on two consecutive days for three hours per day per batch of the practical examination.

(B) Each candidate must produce a certificate from the Head of the Department in her/his college, stating that he/she has completed in a satisfactory manner the practical course on lines laid down from time to time by Academic Council on the recommendations of Board of Studies and that the journal has been properly maintained. Every candidate must have recorded his/her observations in the laboratory journal and have written a report on each exercise performed. Every journal is to be checked and signed periodically by a member of teaching staff and certified by the Head of the Department at the end of the year. Candidates must produce their journals at the time of practical examinations.

Nature of Question paper and distribution of marks for B. Sc III Microbiology Practical Examination-

Practical I, II, III & IVQ.1 Major Experiment20 MarksQ.2 Minor Experiment15 MarksQ.3 Journal05 MarksSpotting10 MarksViva-voce10 MarksTour report20 Marks