# Shri Acharyaratna Deshbhooshan Shikshan Prasarak Mandal, Kolhapur Mahavir Mahavidyalaya, Kolhapur (Autonomous) Affiliated to Shivaji University, Kolhapur



## Syllabus for Choice Based Credit System (NEP 1.0) Bachelor of Science (B. Sc.) Programme

| PartIICourseMicrobiology |
|--------------------------|
|--------------------------|

## **Under the Faculty of Science & Technology**

(To be introduced from Academic Year 2024 - 25 onwards) Subject to the revisions modifications made from time to time

## Mahavir Mahavidyalaya, Kolhapur (Autonomous) Affiliated to Shivaji University, Kolhapur

(New syllabus under Autonomy to be introduced from June, 2024 onwards)

| Primary Information: |                                      |                  |           |  |
|----------------------|--------------------------------------|------------------|-----------|--|
| Programme            | Bachelor of Science (B. Sc.) NEP 1.0 |                  |           |  |
| Part                 | II                                   | Semester         | III       |  |
| Course               | Microbiology                         | Course Code      | DSC I5    |  |
| Paper No.            | V                                    | Course Type      | Semester  |  |
| Total Marks          | 50 Marks                             | Implementation   | 2024 - 25 |  |
| Total Credits        | 02                                   | Contact Hours    | 02/Week   |  |
| Course Title         | <b>Microbial Physiol</b>             | ogy & Metabolism |           |  |

| Course Objectives: |                                                                   |  |  |
|--------------------|-------------------------------------------------------------------|--|--|
| i)                 | To understand growth phases and measurement of growth             |  |  |
| ii)                | To understand effect of environmental factors on microbial growth |  |  |
| iii)               | To understand catabolism of glucose                               |  |  |
| iv)                | To understand basic concept of fermentation                       |  |  |

| <b>Course Syllabus</b> (CR = Credits / IH: Instructional Hours) |    |    |  |
|-----------------------------------------------------------------|----|----|--|
| Modules                                                         | CR | IH |  |
| Module I : Microbial Physiology                                 |    |    |  |
| A) Growth : Growth phases, measurement of growth,               |    |    |  |
| continuous growth, synchronous growth and diauxic growth        |    | 15 |  |
| B) Microorganisms at extreme environment and their              |    |    |  |
| strategies-                                                     | 01 |    |  |
| i) Temperature ii) pH ii) Osmotic pressure iv) Heavy metals     |    |    |  |
| v) Radiations                                                   |    |    |  |
| C) Transport across cell membrane –                             |    |    |  |
| Diffusion, active transport and group translocation             |    |    |  |
| Module II : Microbial Metabolism                                |    |    |  |
| A) Catabolism of glucose - EMP,HMP, ED and TCA cycle            |    |    |  |
| <b>B</b> ) Fermentation –Homolactic & Heterolactic fermentation | 01 | 15 |  |
| C) Bacterial electron transport chain –Components, flow of      |    |    |  |
| electrons & mechanism of ATP generation - Chemiosmotic          |    |    |  |
| hypothesis                                                      |    |    |  |

| Course Outcomes:                                               |
|----------------------------------------------------------------|
| On completion of the course, students will be able to :        |
| Know the growth phases and measurement of growth               |
| Understand effect of environmental factors on microbial growth |
| Understand catabolism of glucose                               |
| Understand the basics of fermentation                          |

| Primary Information: |                   |                        |           |
|----------------------|-------------------|------------------------|-----------|
| Programme            | Bachelor of Scien | ce (B. Sc.) NEP 1.0    |           |
| Part                 | II                | Semester               | III       |
| Course               | Microbiology      | Course Code            | DSC I6    |
| Paper No.            | VI                | Course Type            | Semester  |
| Total Marks          | 50 Marks          | Implementation         | 2024 - 25 |
| Total Credits        | 02                | Contact Hours          | 02 / Week |
| Course Title         | Microbial Geneti  | cs & Molecular Biology | 7         |

## **Course Objectives:**

| Cour |                                                        |
|------|--------------------------------------------------------|
| i)   | To understand forms of DNA and detail structure of DNA |
| ii)  | To understand basic concept of mutation                |
| iii) | To understand types of mutations                       |
| iv)  | To understand modes of gene transfer                   |

1

### Course Syllabus

| e our se sy nusus                                                |     |    |
|------------------------------------------------------------------|-----|----|
| (CR = Credits / IH: Instructional Hours)                         |     |    |
| Modules                                                          | CR  | IH |
| Module I : Basics of Genetics                                    |     |    |
| A) Basic concepts -                                              |     |    |
| a) Forms of DNA                                                  |     |    |
| b)Gene, genome, genotype, phenotype, mutagen, recon,             |     |    |
| muton, cistron                                                   |     |    |
| c) Split genes.                                                  |     |    |
| d) Genetic code – definition and properties of genetic code.     |     |    |
| B) Mutation -                                                    |     |    |
| a) Basic Concepts of Mutation: Base pair substitutions, Frame    |     |    |
| shift, Missense, nonsense, neutral, silent, pleiotropic and      | 0.1 |    |
| suppressor mutations.                                            | 01  | 15 |
| b) Spontaneous mutation – Definition and basic concept.          |     |    |
| c) Induced mutations – Definition, Mechanism of                  |     |    |
| mutagenesis by- i)Base analogues : 5-Bromouracil and 2-          |     |    |
| aminopurines                                                     |     |    |
| ii) Mutagens modifying nitrogen bases- a) Nitrous acid b)        |     |    |
| Hydroxylamine c) Alkylating agents                               |     |    |
| iii) Mutagens that distort $DNA - a$ ) Acridine dyes b) UV light |     |    |
| C) DNA repair :                                                  |     |    |
| i) Photoreactivation                                             |     |    |
| ii) Dark repair mechanism (Excision repair)                      |     |    |
| Module II : Microbial Genetics                                   |     |    |
| A) Gene transfer in bacteria.                                    | 01  | 15 |
| a) Fate of exogenote in recipient cell.                          |     |    |

| b)Modes of gene transfer - Transformation, Conjugation,    |  |
|------------------------------------------------------------|--|
| Transduction                                               |  |
| B) Plasmids –                                              |  |
| a) Natural – Properties, types, structure and applications |  |
| b) Artificial – pBR 322- structure and applications        |  |
| <b>D</b> ) Lac operon – structure and working              |  |

#### **Course Outcomes:**

On completion of the course, students will be able to :

Understand forms of DNA and detail structure of DNA

Understand basic concept of mutation

Understand types of mutations

Understand modes of gene transfer by transformation, conjugation and transduction.

| Primary Information:                           |                         |                |           |
|------------------------------------------------|-------------------------|----------------|-----------|
| Programme Bachelor of Science (B. Sc.) NEP 1.0 |                         |                |           |
| Part                                           | II                      | Semester       | IV        |
| Course                                         | Microbiology            | Course Code    | DSC I7    |
| Paper No.                                      | VII                     | Course Type    | Semester  |
| Total Marks                                    | 50 Marks                | Implementation | 2024 - 25 |
| Total Credits                                  | 02                      | Contact Hours  | 02/ Week  |
| Course Title                                   | <b>Applied Microbio</b> | logy           |           |

## **Course Objectives:**

|      | 0                                                           |
|------|-------------------------------------------------------------|
| i)   | To understand sources of microorganisms in air              |
| ii)  | To understand the routine bacteriological analysis of water |
| iii) | To understand contamination of milk and examination of milk |
| iv)  | To understand fermentation and types of fermentation        |

| Course Syllabus (CR = Credits / IH: Instructional Hours)           |    |    |  |  |
|--------------------------------------------------------------------|----|----|--|--|
| Modules                                                            | CR | IH |  |  |
| Module I: Applied Microbiology                                     |    |    |  |  |
| A) Air Microbiology:                                               |    |    |  |  |
| a) Sources of microorganisms in air.                               |    |    |  |  |
| b) Definitions of - Infectious dust, Droplets & Droplet nuclei     |    |    |  |  |
| c) Sampling methods for microbial examination of air               |    |    |  |  |
| i) Solid impaction - Sieve device                                  |    |    |  |  |
| ii) Liquid Impingement – Bead-bubbler device                       |    |    |  |  |
| B) Microbiology for potable water :                                |    |    |  |  |
| a) Sources of microorganisms in water.                             |    |    |  |  |
| b) Fecal pollution of water, Indictors of fecal pollution of water |    |    |  |  |
| –E. coli                                                           |    |    |  |  |
| c) Routine Bacteriological analysis of water.                      |    |    |  |  |
| 1) SPC & 2) Tests for coliforms -                                  | 01 | 15 |  |  |
| i. Qualitative-Detection of coliforms - Presumptive test,          | 01 | 10 |  |  |
| Confirmed Test, Completed test. Differentiation between            |    |    |  |  |
| Coliforms - IMViC test, Eijkman test.                              |    |    |  |  |
| ii. Quantitative – MPN, Membrane filter technique                  |    |    |  |  |
| d) Municipal water purification process and its significance.      |    |    |  |  |
| C) Milk Microbiology:                                              |    |    |  |  |
| a) Sources of microorganisms in milk                               |    |    |  |  |
| b) General composition of Milk.                                    |    |    |  |  |
| c) Microbiological examination of Milk – DMC, SPC and dye          |    |    |  |  |
| reduction test- MBRT test                                          |    |    |  |  |
| d) Pasteurization - Definition, Methods – LTH, HTST, UHT,          |    |    |  |  |
| Determination of efficiency of Pasteurization– Phosphatase test    |    |    |  |  |
| (Qualitative)                                                      |    |    |  |  |

| Module II: Industrial Microbiology                              |    |    |
|-----------------------------------------------------------------|----|----|
| A) Basic concepts of fermentation.                              |    |    |
| 1. Definition, concept of primary and secondary metabolites     |    |    |
| 2. Types of fermentations – Batch, continuous, dual and         |    |    |
| multiple                                                        |    |    |
| 3. Typical Fermentor design – Parts and their functions.        | 01 | 15 |
| 4. Factors affecting fermentation process                       |    |    |
| B) Screening - Primary and secondary screening                  |    |    |
| C) Fermentation Media - Water, carbon source, nitrogen          |    |    |
| source, Precursors, growth factors, antifoam agents & chelating |    |    |
| agents.                                                         |    |    |

| Course Outcomes:                                                             |
|------------------------------------------------------------------------------|
| On completion of the course, students will be able to :                      |
| Understand sources of microorganisms in air                                  |
| Understand the source of microorganisms in water and routine bacteriological |
| analysis of water                                                            |
| Understand contamination of milk and examination of milk                     |
| Understand fermentation and types of fermentation                            |

| Primary Information: |                                                         |                     |           |
|----------------------|---------------------------------------------------------|---------------------|-----------|
| Programme            | <b>Bachelor of Scien</b>                                | ce (B. Sc.) NEP 1.0 |           |
| Part                 | II                                                      | Semester            | IV        |
| Course               | Microbiology                                            | Course Code         | DSC I8    |
| Paper No.            | VIII                                                    | Course Type         | Semester  |
| Total Marks          | 50 Marks                                                | Implementation      | 2024 - 25 |
| Total Credits        | 02                                                      | Contact Hours       | 02/Week   |
| Course Title         | burse Title Basics in Medical Microbiology & Immunology |                     |           |

## **Course Objectives:**

| i)   | To understand the basic terms and concept of medical microbiology        |
|------|--------------------------------------------------------------------------|
| ii)  | To understand types of diseases and mode of transmission of diseases     |
| iii) | To understand basic concept of immunology                                |
| iv)  | To understand theories antibody production and antigen-antibody reaction |

| Course Syllabus                                                   |    |    |
|-------------------------------------------------------------------|----|----|
| (CR = Credits / IH: Instructional Hours)                          |    |    |
| Modules                                                           | CR | IH |
| Module I: Basics in Medical Microbiology                          |    |    |
| A)Definitions –                                                   |    |    |
| Host, Parasite, Saprophytes, Commensal, Infection,                |    |    |
| Etiological agent, Disease, Pathogen, Opportunistic pathogen,     |    |    |
| True pathogen, Virulence, Pathogenicity, Fomite, Incubation       |    |    |
| period, Carriers, Morbidity rate, Mortality rate, Epidemiology,   |    |    |
| Etiology, Prophylaxis, Antigen, Antibody, Hapten, Vaccine,        |    |    |
| Immunity.                                                         |    |    |
| <b>B)</b> Virulence factors (production of endotoxins, exotoxins, |    |    |
| enzymes, escaping of phagocytosis)                                |    |    |
| C) Types of diseases –                                            |    |    |
| i) Epidemic ii) Endemic iii) Pandemic iv) Sporadic.               | 01 | 15 |
| D) Types of infections –                                          |    |    |
| Chronic, acute, primary, secondary, Reinfection, Iatrogenic,      |    |    |
| congenital, local, generalized, Covert, Overt, Simple, Mixed,     |    |    |
| Endogenous, Exogenous, Latent, Pyogenic, Nosocomial.              |    |    |
| E) Modes of transmission of diseases -                            |    |    |
| 1. Transmission by air, water & food                              |    |    |
| 2. Contact transmission                                           |    |    |
| 3. Vector borne transmission                                      |    |    |
| F) General principles of prevention and control of                |    |    |
| microbial diseases.                                               |    |    |
| G) Normal flora of human body & its significance                  |    |    |
| Module II: Basics in Immunology                                   | 01 | 15 |
| A) Immunity                                                       | 01 | 15 |

| i) Definition                                                               |  |
|-----------------------------------------------------------------------------|--|
| ii) Innate Immunity- types, factors influencing innate immunity             |  |
| iii)Acquired Immunity – Active & passive                                    |  |
| B)Non Specific defense mechanisms of the vertebrate body                    |  |
| i) First line of defense                                                    |  |
| ii) Second line of defense                                                  |  |
| C) Antigen: Chemical nature, types of antigens, factors                     |  |
| affecting antigenicity.                                                     |  |
| <b>D</b> ) <b>Antibody:</b> Types of antibodies – Structure, properties and |  |
| functions.                                                                  |  |
| E) Theories of antibody production.                                         |  |
| F) Immune Response: Primary and secondary immune                            |  |
| responses.                                                                  |  |
| G) Mechanism of antigen – antibody reaction- Lattice                        |  |
| hypothesis                                                                  |  |
| H) Types of antigen-antibody reaction-Precipitation and                     |  |
| Agglutination                                                               |  |

| Course Outcomes:                                                      |
|-----------------------------------------------------------------------|
| On completion of the course, students will be able to :               |
| Understand the basic terms in medical microbiology                    |
| Understand types of diseases and mode of transmission of diseases     |
| Understand basic concept of immunology                                |
| Understand theories antibody production and antigen-antibody reaction |

# **Practical Course Semester III**

### **Course Objectives:**

This course is designed to demonstrate practical skills in the use of tools and techniques commonly used in microbiology.

| 1) Micrometry                                                          |       |       |
|------------------------------------------------------------------------|-------|-------|
| 2) Stains and staining procedures :                                    |       |       |
| i) Flagella staining (Bailey's method)                                 |       |       |
| ii) Nucleus staining (Giemsa's method) using yeast cells.              |       |       |
| 3) Preparation of media :                                              |       |       |
| i)Gelatin agar                                                         |       |       |
| ii)Amino acid decarboxylation medium                                   |       |       |
| iii)Amino acid deamination medium                                      |       |       |
| iv)Arginine broth                                                      |       |       |
| v)Christensen's medium                                                 |       |       |
| vi)Peptone nitrate broth                                               |       |       |
| vii)Hugh and Leifson's medium                                          |       |       |
| 4) Biochemical tests :                                                 |       |       |
| i) Gelatin hydrolysis test.                                            |       |       |
| ii) Amino acid decarboxylation test                                    |       |       |
| iii) Amino acid deamination test                                       |       |       |
| iv) Urea hydrolysis test                                               |       |       |
| v) Nitrate reduction test                                              | Cr 02 | 30 Hr |
| vi) Huge and Leifson's test                                            |       |       |
| vii) Arginin hydrolysis                                                |       |       |
| viii) Oxidase test                                                     |       |       |
| 2) Effect of environmental factor on microorganisms :                  |       |       |
| i) Temperature                                                         |       |       |
| ii) pH                                                                 |       |       |
| iii) Heavy metals – Copper                                             |       |       |
| iv) Antibiotic – Penicillin/Streptomycin                               |       |       |
| v) Salt – NaCl                                                         |       |       |
| 3) Determination of growth phases of <i>E. coli</i> by Optical density |       |       |
|                                                                        |       |       |
|                                                                        |       |       |
|                                                                        |       |       |
|                                                                        |       |       |
|                                                                        |       |       |
|                                                                        |       |       |

| Semester IV                                                     |  |
|-----------------------------------------------------------------|--|
| 1) Bacteriological analysis of water                            |  |
| a. Qualitative tests – Presumptive, confirm and completed test  |  |
| b. Quantitative - MPN                                           |  |
| 2) Primary Screening of -                                       |  |
| i. Antibiotic producers – crowded plate technique               |  |
| ii. Organic acid producer                                       |  |
| 3) MBRT test.                                                   |  |
| 4) Isolation of lac negative mutants of <i>E.coli</i> by visual |  |
| detection method                                                |  |
| 5) Effect of U.V. light on growth of bacteria                   |  |
| 6) Isolation and identification of pathogenic microorganisms    |  |
| from clinical sample.                                           |  |
| i) Salmonella species                                           |  |
| ii) Proteus species                                             |  |
| 7) Determination of Blood groups – ABO and Rh.                  |  |
| 8) Serological tests - Widal test – qualitative slide test      |  |

| Course Outcomes:                                                                  |
|-----------------------------------------------------------------------------------|
| Students will be understood flagella and nucleus staining.                        |
| Students will be able to prepare culture media and know its use.                  |
| Students will be able to perform various biochemical tests.                       |
| Students will understand the various effect of environmental factors on microbial |
| growth                                                                            |
| Students will be able to isolate and identify the pathogens                       |
| Students will be able to perform serological tests.                               |

| Reference Materials -  |                                                                        |  |
|------------------------|------------------------------------------------------------------------|--|
| Text Books for Reading |                                                                        |  |
| 1.                     | Microbiology – Pelczar, Reid and Chan                                  |  |
| 2.                     | Industrial microbiology – Prescott and Dunn                            |  |
| 3.                     | General Microbiology – R. Y. Stainer                                   |  |
| 4.                     | Industrial microbiology – Casida, E.                                   |  |
| 5.                     | General Microbiology – Vol. I and Vol. II – Pawar and Diganawala       |  |
| 6.                     | Text book of Microbiology – Ananthnarayan                              |  |
|                        | <b>Books for Reference</b>                                             |  |
| 1.                     | Introduction to Microbial technique – Gunasekaran.                     |  |
| 2.                     | Outlines of Biochemistry – Cohn and Stumph                             |  |
| 3.                     | Foundation in Microbiology – by Kathleen Park talaro, Arther Talaro.   |  |
| 4.                     | Introduction to Microbiology – John I. Ingraham, Catherine A. Ingraham |  |
|                        | A. Ingraham A.                                                         |  |

| 5.                  | Ingraham, Ronald M; Second edition.                                    |  |
|---------------------|------------------------------------------------------------------------|--|
| 6.                  | Zinsser's Microbiology – by Wolfagang K. Joklik, (1995) Mc Graw-Hill   |  |
|                     | Co.                                                                    |  |
| 7.                  | Microbial Genetics – by Stanley R. Maloy, David Freifelder and John E. |  |
|                     | Cronan.                                                                |  |
| Books for Practical |                                                                        |  |
| 1.                  | Manual of Diagnostic Microbiology – Wadher and Boosreddy.              |  |
| 2.                  | Diagnostic Microbiology – Fingold.                                     |  |
| 3.                  | Introduction to Microbial technique – Gunasekaran.                     |  |
| 4.                  | Biochemical methods – Sadashivam and Manickam.                         |  |
| 5.                  | Basic and Practical Microbiology – Atlas.                              |  |
| 6.                  | Bacteriological techniques F. J. Baker.                                |  |
| 7.                  | Laboratory Fundamentals of Microbiology – Alcamo, I. E.                |  |
| 8.                  | Clinical Microbiology – Ramnik Sood.                                   |  |

| Suggested methods of Teaching: |                                                    |  |  |  |
|--------------------------------|----------------------------------------------------|--|--|--|
| i)                             | Offline Traditional Board Teaching                 |  |  |  |
| ii)                            | Power Point Presentation                           |  |  |  |
| iii)                           | Online Teaching on platform of Zoom or Google Meet |  |  |  |

| Scheme of Course Evaluation |                                      |    |  |  |
|-----------------------------|--------------------------------------|----|--|--|
| 1.                          | End Semester Examination (ESE)       | 40 |  |  |
| 2.                          | Continuous Internal Evaluation (CIE) | 10 |  |  |
| 3.                          | Total Marks                          | 50 |  |  |

| Suggested techniques for Continuous Internal Evaluation |                           |  |  |
|---------------------------------------------------------|---------------------------|--|--|
| (10 Marks)                                              |                           |  |  |
| 1.                                                      | Seminar                   |  |  |
| 2.                                                      | Field Report              |  |  |
| 3.                                                      | Assignments               |  |  |
| 4.                                                      | Open book test            |  |  |
| 5.                                                      | Offline / online MCQ test |  |  |
| 6.                                                      | Diagram test              |  |  |
| 7.                                                      | Visit/Tour report         |  |  |
| 8.                                                      | Surprise test             |  |  |

| Question Paper Pattern (40 Marks) Theory Exam |                                  |                   |  |  |
|-----------------------------------------------|----------------------------------|-------------------|--|--|
| Q. No.                                        | Nature / Type of Question        | Marks             |  |  |
| 1.                                            | Multiple Choice Questions (MCQ)  | 6 Marks           |  |  |
|                                               | 6 Questions                      | (1 Marks for each |  |  |
|                                               |                                  | question)         |  |  |
| 2.                                            | Write answers in short           | 10Marks           |  |  |
|                                               | 5 Questions                      | (2 Marks for each |  |  |
|                                               |                                  | question)         |  |  |
| 3.                                            | Write Short Notes                | 12Marks           |  |  |
|                                               | Attempt any 3 out of 5 questions | (4 Marks for each |  |  |
|                                               |                                  | question)         |  |  |
| 4.                                            | Write descriptive question       | 6 Marks           |  |  |
|                                               | Attempt any 1 out of 2 questions |                   |  |  |
| 5.                                            | Write descriptive question       | 6 Marks           |  |  |
|                                               | Attempt any 1 out of 2 questions |                   |  |  |
| 6.                                            | Total Marks                      | 40                |  |  |