Mahavir College Kolhapur

Department of Mathematics

Annual Teaching Plan

B.Sc. Part-I

Academic year 2024-2025

Semester I

Department - Mathematics

Subject - Mathematics

Course -

Paper -I- : Differential Calculus

Name of teacher – Ms. Patil R.S

Month-July		Module/Unit	Sub-units planned	
Lectures 8	Practicals	Total 8	Unit-1: Limit And Continuity:	1.1 Definition of limit of a real-valued function1.2 Algebra of limits
				1.3 Limit at infinity and infinite limits1.4 Definition: Continuity at a point and Continuous functions on interview.
				1.5 Theorem: If f and g are continuous functions at point $x = a$, then f f.g and f/g are continuous at point.
Month-Au	ugust			
Lectures 08	Practicals 8	Total 16	Unit -1 Limit And Continuity	1.6 Theorem: Composite function of two continuous functions is cont 1.7 Examples on continuity.
				1.8 Classification of Discontinuities (First and second kind), Removal Discontinuity, Jump Discontinuity.
			Unit-1 Limit And Continuity	Properties of continuity of Real Valued functions:
				1.9 Theorem: If a function is continuous in the closed interval [a, b] bounded in [a, b]
				1.10 Theorem: If a function is continuous in the closed interval [a itattains its bounds at least once in [a, b].
				1.11 Theorem: If a function f is continuous in the closed interval [a, f(a)and f(b) are of opposite signs then there exists $c\Box(a, b)$ such that
				$\mathbf{f}(\mathbf{c}) = 0,$
Month-Se	eptember			
Lectures 8	Practicals 4	Total 12	Unit-1 Limit And Continuity	Theorem: If a function f is continuous in the closed interval [a, b] and f(b) then f assumes every value between f (a) and f (b). 1.13 Uniform continuity.
			Unit-2 Differentiability:	 2.1 Differentiability of a real-valued function 2.2 Geometrical interpretation of differentiability 2.3 Relation between differentiability and continuity 2.4 Chain rule of differentiation 2.5 Mean Value theorems: Rolle's theorem, Lagrange's meaning value theorem, Cauchy's mean value theorem 2.6 Geometrical interpretation of mean value theorem
				differentiation Successive differentiation

Month- O Novembe	ctober – r			
Lectures 6	Practicals 8	Total 14	Unit-2 Differentiability	2.1 Successive differentiation 2.2 Leibnitz's theorem and its application 2.3 Maclaurin's and Taylor's theorems Maclaurin's and Taylor's expansion for standard function

Ms. Patil R.S

	Annual Teach	ning Plan	
Academic year 2024-2025 Mathematics	B.Sc. Part-I	Semester I	Department -
Subject - Mathematics		Cours	se -

Paper II – Basic Algebra and complex number

Name of teacher – Patil H.K

l	Month-July		Module/Unit	Sub-units planned
Lectures 08	Practicals 16	Total 24	Unit-1 Theory of Equations	 1.1 Nature of solution of AX = 0 1.2 Non – Homogeneous linear equations 1.3 Working rule for finding solution of AX = B Examples.
Month-Au	gust	•		
Lectures 09	Practicals 16	Total 25	Unit -1 Theory of Equation	1.1 Relations between the roots and the coefficients of polynomial equations Integral and rational roots.
			Unit-1 Complex Number	 1.1 Introduction 1.2 Polar representation of complex numbers 1.3 De Moivre's theorem (integer and rational indices) 1.4 Roots of a complex number, expansion of cosnθ,sinnθ 1.5 Euler's exponential form of a complex number 1.6 circular function and its periodicity Hyperbolic function
Month-Sep	otember			
Lectures 08	Practicals 20	Total 28	Unit-2 Matrices:	 2.1 Types of Matrix, Transpose of matrix, Conjugate of matrix, Transposed- conjugate of a matrix 2.2 Row reduction and echelon forms 2.3 The rank of a matrix and applications, Inverse of matrix 2.4 Eigenvalues and eigenvectors of matrix
			Unit-2 Matrices	2.5 Cayley-Hamilton theorem and its

			application System of linear equations 2.6 Homogeneous linear equations
Month- October November			
Lectures Practicals 12 16	Total 28	Unit-2 Matrices	 2.7 Nature of solution of AX = 0 2.8 Non – Homogeneous linear equations 2.9 Working rule for finding solution of AX = B Examples.

Ms. Patil R.S

Department – Mathematics

Annual Teaching Plan

Semester II

Academic year 2024 -2025

Course -

Subject - Mathematics

Paper III : Differential Equations - I

B.Sc. Part-I

Name of teacher – Ms.Rutuja Patil

December	
Lectures 09Practicals 8Total 17Unit-1: Differential Equations of first order and first degree:1.3 Revision: Definition of Differential equation, order and degree of Differential equation.09817Unit-1: Differential Equations of first order and first degree:1.3 Revision: Definition of Differential equation, order and degree of Differential equation.1.4 Definition: Exact Differential equations.1.4 Definition: Exact Differential equations.1.5 Theorem: Necessary and sufficient condition for exactness. 1.2.2Working Rule for solving an exact differential equation1.6 1.2.3 Integrating Factor (I.F.) by using rules (without proof).1.7 Linear Differential Equation: Definition.1.8 Method of solution.1.9 Bernoulli's Differential Equation: Definition.1.10 Method of solutionMethod of solution	tial s. 1.

				 1.11 Bernoulli's Differential Equation: Definition. 1.12 Method of solution. 1 Method of solution
Month-Ja	nuarv			
Lectures 9	LecturesPracticalsTota9817		Unit -1 Differential Equations of first order and first degree	Orthogonal trajectories: Cartesian and polar co- ordinates. Linear Differential Equations with constant Coefficients:
			Unit-1 Differential equation of first order and first degree	 1.5.1 Method of solution. 1.6 Orthogonaltrajectories: Cartesian and polar co- ordinates. Linear Differential Equations with constant Coefficients: 1.7 Definition: Complementary function (C.F.) and particular integral (P.I.), operator D. 1.8 General Solution of f(D) y=0. 1.8.1 Solution of f (D) y = 0 when A.E. has non- repeated roots. 1.8.2 Solution of f (D) y = 0 when A.E. has repeated roots. 1.8.3 Solution of f (D) y = 0 when A.E. has non-repeated roots real and complex roots. 1.10 Solution of D(y) = X, where X is of the form 1.10.1 e^{ax}, where a is constant
Month-Fe	hruary			
Lectures 08	Practicals 4	Total 12	Unit-1 Differential equation of first order and first degree	 1.10.1 sin(ax) and cos(ax) 1.10.2 x^m, m is positive integer 1.10.3 e^{ax}V, where V is a function of x xV, where V is a function of x.
Month- M	Iarch			
Lectures 07	Practicals 4	Total 11	Unit 2 Equation of first order but not first degree	 2.1 Equations that can be factorized 2.2 Equation solvable for p 2.3 Equations that cannot be factorized 2.4 Equation solvable for x 2.1 Equations that can be factorized 2.2 Equation solvable for p 2.3 Equations that cannot be factorized 2.4 Equation solvable for x 2.5 Clairat's form and Method of solution Equation reducible to Clairaut's form 2.6 Special form reducible to Clairaut's form

Annual	Teaching	Plan
--------	----------	------

Academic year 2024 -2025 B.S Mathematics

B.Sc. Part-I Semester II

Department -

_

Subject - Mathematics

Course -

Paper- IV - Discrete Probability Distributions

Name of teacher - Ms Patil H.K

Month- November -December		Module/Unit	Sub-units planned	
Lectures	Practicals	Total	Unit-1 Changes of Axis	Translation
10	20	30		Rotation
				Iranslation and Rotation
				Rotation followed by Translation
				I ranslation followed by Rotation
				Invariants, Basic theorems Polar
				Coordinates
				Polar equation of circle:
				Centre – radius form
				Centre at the pole
				the polar axis at the pole
				Passing through the pole and with centre
				on the initial line
Month-Jar	nuary	I		
Lectures	Practicals	Total	Unit -1 Changes of Axis	1.1 Passing through the pole and
09	12	21		the diameter through pole
				making an angle α
				with initial line
				1.2 Equation of chord tangent and
				$n \circ r$ mal to the circler =
				$2acos\theta$
				1.3 Polar equation of a conic in the
				form ^{l} = 1 + $ecos\theta$
				r
				1.4 Polar equation of a conic in
				the form ^{<i>l</i>} = $1 \pm ecos(\theta - \alpha)$
				r
				chord, tangent and normal of
			Unit-2 Sphere	2.1 Equation in different form
				• centre – radius
				IOFM
				General form
				Diameter form
				• Intercept form
				2.2 Intersection of sphere with
				Straight line and a plane
				2.5 Power of a point and radical
				2 4 Tangont plane and condition of
				2.4 Tangent plane and condition of
				tangency

				2.5 Equation of circle2.6 Intersection of (i) two sphere (ii) a sphere and planeOrthogonality of two spheres
Month-Feb	oruary	T		
Lectures 07	Practicals 16	Total 23	Unit-2 Sphere	Cone 2.1 Definitions of cone, vertex, generators Equation of a cone with vertex at a point (X_1, Y_1, Z_1)
Month- M	arch			
Lectures 12	Practicals 12	Total 20	Unit-2 Sphere	 2.10 Equation of a cone with vertex at origin 2.11 Right circular cone and equation of a right circular cone 2.12 Enveloping cone and equation of an enveloping cone 2.13 Equation of a tangent plane Condition of tangency

Ms. Patil R.S

Annual Teaching Plan

B.Sc. Part-II

Academic year 2024 -2025

Semester III Department -Mathematics

Subject - Mathematics

Course -

Paper V- Real Analysis -I

Name of teacher – Patil

Month-July		Module/Unit	Sub-units planned	
Lectures 13	Practicals 32	Total 45	Unit-Sets and Functions	Introduction Revision of sets Operation on sets Union, Intersection, Complement, Relative complement, Cartesian product of sets, Relation. Illustrative Examples Functions Definition: Function, Domain, Co- domain, Range, Graph of function, Direct image and Inverse image of a subset under a function. Example of direct image and inverse image of a subset. Definitions Injective, Surjective and Bijective functions (1-1 correspondence) Inverse function. Composite function, Restriction and Extension of a function.
Month-Au	gust	1		
Lectures 13	Practicals 76	Total 89	Unit -1 Sets and Functions	Mathematical Induction Well ordering Property of Natural Numbers Principles of Mathematical Induction First Version of Principal of Mathematical Induction Second Version of Principal of Mathematical Induction. Principles of Strong Induction Illustrative Examples Multiple Choice Questions
			Unit-2 Countable Sets	Countable Sets Introduction Definitions Equivalent sets, Countable Sets, Uncountable sets. Examples of countable sets Sets of Natural number, Set of Integers, Set of even Natural numbers and odd natural numbers. Proposition: Union of two disjoint countable sets is countable. Theorems and Examples. Illustrative Examples

Month-Se	ptember			
Lectures 11	Practicals 56	Total 67	Unit-2 Countable Set	 2.1 Algebraic and Order Properties of R 2.2 Algebraic properties Properties of real numbers. 2.3 Theorems 2.4 Inequalities 2.5 Arithmetic – Geometric Mena Inequality (With Proof)
			Unit-2 Countable Set	Bernoulli's Inequality (With Proof) Illustrative Examples Absolute Value and the Real Line Definition, Theorems, Triangle Inequality Illustrative Example Completeness Property of R
Month- Oc	ctober-Noven	nber		
Lectures 12	Practicals 64	Total 76	Unit-2 Countable set	Applications of the Supremum Property Interval Types of Intervals Characterization theorem Multiple Choice Questions

Ms. Patil R.S

Annual Teaching Plan

Semester III

Academic year 2024-2025

Subject - Mathematics

Paper VI - Algebra I

B.Sc. Part-II

Name of teacher – Patil

Month-July			Module/Unit	Sub-units planned
Lectures	Practicals	Total	Unit-1 Matrices and	Definitions: Hermitian and skew
12	16	28	rolations	Hermitian matrices.
			relations	Properties of Hermitian and skew
)	Hermitian matrices.
				Rank of a matrix, Row-echelon Form
				and reduced row echelon form.
				System of linear homogeneous
				equation and linear non-
				homogeneous equation. Condition
				for consistency. Nature of the
				General Solution
				Gaussian elimination and Gauss
				lordon method (Using row-echelon
				form and reduced row echelon
				form) Examples
				The characteristic equation of a
				matrix. Eigen values
				Figon voctors of the matrix
Month-Au	gust			
Lectures	Practicals	Total		Cavley Hamilton Theorem
13	20	33	Unit-1 Matrices and	1.6 Applications of Cavley Hamilton
_	-		relation	theorem (Examples)
				1.7 Relations: Definition. Types of
				relations Equivalence relation
				Partial ordering
				relation
				1.8 Example of equivalence relation
				and Partial ordering relations
				1.9 Digraphs of relations matrix
				representation
				Composition of Polations
				1 11 Transitive closure Warhill's
				1.11 Transitive closure, warnin s
				algorithm
Month-Ser	otember	1		
Lectures	Practicals	Total	Unit_? Matrices and relation	Equivalence classes, Partition of a
13	12	25	Unit-2 matrices and relation	set
				Theorem: Let ~ be an equivalence
				relation on a set X. Then
				For every $x \in X$. $x \in \overline{X}$
				For every x, $v \in \overline{X}$, $x \in \overline{Y}$ if
				and only if $\overline{X} = \overline{Y}$
				For every x $v \in \overline{X}$ either
				$\bar{X} \cap \bar{Y} = \emptyset$
				Equivalence Class Theorem
Month- October -November				

Department -Mathematics

Course -

Lectures	Practicals	Total	Unit-2 Groups	1 Definition
12	20	32	Cint-2 droups	2.2 Group and its properties
				2.3 Definition of Group, Semigroup,
				finite
				2.4 Theorem: In a group G
				The identity element is
				unique
				The inverse of each element
				in C
				(n=1)-1 o for all a C C
				$(a^{-})^{-}$ = a for all $a \in G$
				$(ab) \stackrel{*}{=} b \stackrel{*}{a} \stackrel{*}{=} For all a, b \in G$
				Subgroups
				2.5 Definition
				2.6 Theorem: A subset H of a group
				G is a subgroup of G if and only if
				H is closed under the binary
				operation of G
				The identity e of G is in H,
				For all a \in H it is true that a $^{-1} \in$
				H also
				2.7 Theorem: A non-empty subset H
				of a group G is a subgroup of G if
				and only if for all a, b \in H, a*b ⁻¹ \in
				н
				2 8 Theorem: The intersection of
				any two subgroups of a group is
				any two subgroups of a group is
				again a subgroup.
				2.9 Definition
				2.10 Theorem
				2.11 Ineorem
				Cyclic Groups and its Properties
				2.12 Definition of cyclic group
				generated by an element, Cyclic
				subgroup of a group and example
				2.13 Theorem
				2.14 Order of elements of a group
				and their properties
				2.15 Theorem: Every cyclic group is
				abelian.
				2.16 Theorem: If a is a generator of
				a cyclic group G, then O(a)=O(G) Cosets
				2.17 Definition
				2.18 Theorem: If H is a subset of G
				then
				Ha=H if and only if a EH
				Ha-Hh if and only if $ab^{-1}C^{\perp}$
				Ha is a subgroup of C if and only if a
				CII 2 10 Theorem If II is a subsecure of
				2.19 meorem: If H is a subgroup of
				G, then a one-to-one
				correspondence exists between
				any two right(left) cosets of H in G.

Academic year 2024 -2025 Mathematics Semester IV

Department -

Subject - Mathematics

Course -

Paper VII- Real Analysis -II

B.Sc. Part-II

Name of teacher – Patil R.S

Month-November- December		Module/Unit	Sub-units planned	
Lectures	Practicals	Total	Unit 1	Sequence of Real Numbers
14	70	84	Omt-1	Sequence and operations on sequence
				1.1 sequence
				1.2 subsequence of sequence
				1.3 Illustrative example
				1.4 Limit of sequence
				1.5 Convergent sequence
				Definition, Example, Theorems,
				1.6 Illustrative Examples
				1.7 Bounded sequence
				Theorem: The sequence of real numbers $\{s_n\}$
				is convergent then $\{s_i\}$ is bounded
				1.8 Monotone sequence
				Definition Theorems
				1 9 Operations on Convergent Sequence
				Theorems and operations of Convergent
				sequence
				1 10 Exercise
				1.10 Exercise
Month-Jar	nuarv			
Lectures	Practicals	Total	Unit- 1	Limit Superior. Inferior and Cauchy
14	72	86		Sequence
				Limit superior
				Limit Inferior
				Illustrate Examples
				Cauchy Sequence
				1.19 Theorem: If $X = \{s_n\}$ is a convergent
				sequence of real number, then $\{s_n\}$ is
				Cauchy sequence
				Theorem: A Cauchy sequence of real
				number is bounded
				1 21 Cauchy convergent criterion
				Theorem: A sequence of real numbers is
				convergent if and only if it is a Cauchy
				sequence
				1 22 [C 1] Summability of sequence
				1.22 [C, I] Summasing Of Sequence
				1.23 musu auve Examples
				1.24 LACIUSE
Month-Fel	bruary			
Lectures	Practicals	Total	Unit 2 Infinito	2.1 Introduction
12	56	68	Sorios	2.2 Convergent and Divergent Series
			Series	2.3 Illustrative examples
				2.4 Cauchy's General Principle of
				Convergence

			Unit-2 Infinite series	 2.5 Positive Term Series 2.6 Geometric Series 2.7 P-Series 2.8 Comparison Test for Positive term Series.Comparison test (First Type) Limit form of Comparison test 2.10 Comparison test (second type) 2.11 Illustrative 2.12 Cauchy's Root Test 2.13 Illustrative Example 2.14 D'Alembert's Ratio Test 2.15 Illustrative Example 2.16 Raabe's Test 2.17 Illustrative Example Series with Arbitrary Terms 2.18 Introduction
				2.19 Alternating series
Month- March				
Lectures 11	Practicals 64	Total 75	Unit-2 Infinite Series	2.20 Leibnitz Test 2.21 Illustrative Example
Month- April				

Ms.Patil R.S

Annual Teaching Plan

Semester IV

Academic year 2024-2025

B.Sc. Part-II

Department -Mathematics

Subject - Mathematics

Course -

Paper VIII – Geometry

Name of teacher – Patil H.K

Month November -December			Module/Unit	Sub-units planned
Lectures 15	Practicals 20	Total 35	Unit-1 Lagrange's Theorem and its Consequences	Lagrange's Theorem and its Consequences Introduction Lagrange's Theorem Index of a Subgroup Illustrative Examples
Month-Jan	uary			
Lectures 11	Practicals 20	Total 31	Unit-1 Lagrange's Theorem and its Consequences	Consequence of Lagrange's Theorem Exercise 1.7 Multiple Choice Questions.
Month-February				
Lectures 11	Practicals 12	Total 23	Unit-2 Normal Subgroup and Properties	Introduction Normal Subgroup Illustrative Examples Result Related to Normal Subgroups Center of Group
Month- March				
Lectures 12	Practicals 25	Total 37	Unit-2	Normalizer of an Element Factor Group 1.15 Exercise 1.16 Multiple Choice Questions
Month- April				
Lectures 12	Practicals 16	Total 28		1. Numerical Examples

Name & Signature of Teacher

Ms. Rutuja S. Patil