# Shri Acharyaratna Deshbhooshan Shikshan Prasarak Mandal's MahavirMahavidyalaya, Kolhapur (Autonomous) Affiliated to Shivaji University, Kolhapur



## Accredited by NAAC with 'A' Grade

# Syllabus for Choice Based Credit System (CBCS) Bachelor of Science (B.sc.) Programme

| Part I | Course | Computer<br>Science |
|--------|--------|---------------------|
|--------|--------|---------------------|

### **Under the Faculty of Science**

(To be introduced from Academic Year 2024 – 25 onwards) Subject to the revisions& modifications made from time)

### MahavirMahavidyalaya, Kolhapur(Autonomous) Affiliated to Shivaji University, Kolhapur

| Primary Information: |                          |                 |           |
|----------------------|--------------------------|-----------------|-----------|
| Programme            | <b>Bachelor of Scien</b> | ce (B.Sc.) CBCS |           |
| Course               | Computer Sci.            | Course Type     | Semester  |
| Part                 | I                        | Semester        | Ι         |
| Paper No.            | I                        | Course Code     | DSC H1    |
| Total Credits        | 02                       | Total Marks     | 50        |
| Paper No.            | II                       | Course Code     | DSC H2    |
| Total Credits        | 02                       | Total Marks     | 50        |
| Implementation       | 2021 - 22                | Contact Hours   | 05 / Week |

(New syllabus under Autonomy to be introduced from June, 2021 onwards)

| Primary Information: |                   |                 |           |
|----------------------|-------------------|-----------------|-----------|
| Programme            | Bachelor of Scien | ce (B.sc.) CBCS |           |
| Course               | Computer Sci.     | Course Type     | Semester  |
| Part                 | Ι                 | Semester        | II        |
| Paper No.            | III               | Course Code     | DSC H3    |
| Total Credits        | 02                | Total Marks     | 50        |
| Paper No.            | IV                | Course Code     | DSC H4    |
| Total Credits        | 02                | Total Marks     | 50        |
| Implementation       | 2021 - 22         | Contact Hours   | 05 / Week |

| Cours | Course Objectives:                                                          |  |  |
|-------|-----------------------------------------------------------------------------|--|--|
| i)    | To learn basics of Computer, hardware, software, networking.                |  |  |
| ii)   | To inculcate the software development attitude and generate interest in the |  |  |
|       | field of Technology.                                                        |  |  |
| iii)  | To develop programming skills, Project Analysis skill, software             |  |  |
|       | development skill among the students.                                       |  |  |
| iv)   | To inculcate research attitude among students                               |  |  |

| Course         | B.Sc.                           | Semester      | Ι         |
|----------------|---------------------------------|---------------|-----------|
| Course Code    | DSC H1                          | Paper No.     | Ι         |
| Total Credits  | 02                              | Total Marks   | 50        |
| Implementation | 2021 - 22                       | Contact Hours | 05 / Week |
| Paper Name     | Problem Solving Using Computers |               |           |

| Course Syllabi:                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| (CR = Credits / IH: Instructional Hours)                        |    |    |
| Modules                                                         | CR | IH |
| Module I : Problem SolvingUsingComputers                        |    |    |
| 1.1Planning the Computer Program: Concept of problem            |    |    |
| solving, Problem definition, Program design, Debugging, Types   |    |    |
| of errors in programming, Documentation                         |    |    |
| 1.2 Program Design Tools:Algorithm, flow chart, Pseudo          |    |    |
| code.                                                           |    |    |
|                                                                 |    |    |
| 1.3Introduction to Linux Operating System and C                 |    |    |
| Language, Introduction to Vi, Introduction to GCC               |    |    |
| Compiler. Components of Compilation Process.                    |    |    |
|                                                                 |    | 15 |
| 1.4 Introduction to C Language :History, Features, Structure Of | 01 | 15 |
| C program, Installation of C                                    |    |    |
| 1.5 Variable Declaration                                        |    |    |
| 1.6 Data Types                                                  |    |    |
| 1.7 Format Specifiers                                           |    |    |
| 1.8 Escape Sequences                                            |    |    |
| 1.9 Input / Output Statement                                    |    |    |
| 1.10 Operators                                                  |    |    |
| 1.11 Build 1 <sup>st</sup> C Program                            |    |    |
| 1.12 Debugging and compilation                                  |    |    |
| 1.13 Execution of Program                                       |    |    |
| Module II : Control Structures, Array and String                |    |    |
| 2.1 Conditional Branching Statements: Simple if statement,      |    |    |
| If else statement, elseif ladder, Nested ifelse statement,      | 01 | 15 |
| Switch statement                                                |    | 15 |
| 2.2 Looping Statements: While loop, dowhile loop, for loop,     |    |    |
| nested loop                                                     |    |    |

| 2.3 Unconditional Control Statements: BREAK,                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CONTINUE, RETURN, GOTO                                                                                                                                                  |  |
| 2.4 Arrays: Introduction, Features ,Definition, Declaration and<br>Initialisation of an Array, Types of Arrays : One Dimensional,<br>Two Dimensional, Multi Dimensional |  |
| 2.5 String: Introduction, Features ,Definition,                                                                                                                         |  |
| Declaration&Initializing a String , String function : strlen(),                                                                                                         |  |
| <pre>strcpy(), strcat(), strcmp(), strrev()</pre>                                                                                                                       |  |

#### Course Outcomes: On completion of the course, students will be able to use algorithm and flowchart. Student should understand the basics of C programming. Student should be able to develop logic of Problem Solving Student should able to handle multiple data.

| Course         | B.Sc.                      | Semester      | Ι         |
|----------------|----------------------------|---------------|-----------|
| Course Code    | DSC H2                     | Paper No.     | II        |
| Total Credits  | 02                         | Total Marks   | 50        |
| Implementation | 2021 - 22                  | Contact Hours | 05 / Week |
| Paper Name     | Database Management System |               |           |

| Course Syllabi:                                             |    |    |
|-------------------------------------------------------------|----|----|
| (CR = Credits / IH: Instructional Hours)                    |    |    |
| Modules                                                     | CR | IH |
| Module I : Introduction to Database                         |    |    |
| ManagementSystems                                           |    |    |
| 1.1 DBMS – Definition, Characteristics, need of DBMS,       |    |    |
| Advantages of DBMS, Characteristics of database approach,   |    |    |
| DBMSArchitecture                                            | 01 | 15 |
| 1.2 Data Models : Hierarchical, Network, Relational         |    | 10 |
| 1.3 Schema and Instances                                    |    |    |
| 1.4 DBMS architecture: Three Schema Architecture, Internal, |    |    |
| Conceptual, External                                        |    |    |
| 1.5 Data independence: Logical, Physical                    |    |    |
| Module II : Entity Relationship and EnhancedERModel         | 01 | 15 |

| 2.1 ER Model, Components of ER Model: Entities,                  |  |
|------------------------------------------------------------------|--|
| attributes(Type of attributes), Domain ,Tuples, relationship,    |  |
| Notations of ER Model                                            |  |
| Relationships: one-one, one-many, many-one, many-many            |  |
| 2.2 Construction of EER model                                    |  |
| 2.3 SQL Concepts                                                 |  |
| 2.4 Constraints: Domain Integrity, Entity, Referential, And      |  |
| Concept of Object modelling                                      |  |
| 2.5SQL Statements : DDL Statements (create, alter, drop),        |  |
| DML Statements (insert, update, delete), DQL Statements          |  |
| (select)                                                         |  |
|                                                                  |  |
| 2.6 SQL Operators : Logical, Relational, in, between, like, not, |  |
| is null                                                          |  |
| 2.7 SQL Clauses: Where, Order by, Group by, Having               |  |
| 2.8 Aggregate Functions :SUM, MAX, MIN, COUNT, AVG               |  |

| Course Outcomes:                                                               |
|--------------------------------------------------------------------------------|
| Students should learn the basics of data, information, system and Database.    |
| Students should understand the Key concepts of Database and importance and use |
| of ERD.                                                                        |
|                                                                                |

Students should understand basics SQL statements.

| Refe | rence Materials                                                                                                                                                                                      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Books for Reference                                                                                                                                                                                  |
| 1.   | "C Programming in an Open Source Paradigm: A Hands on approach",<br>K.S.Oza, S.R.Patil, R.K.Kamat River Publisher Series in Information Science<br>and Technology, Netherland 978-87-93237-67-4,2015 |
| 2.   | ANSI C – E.Balgurusamy                                                                                                                                                                               |
| 3.   | Let us C – Y.C.Kanetkar                                                                                                                                                                              |
| 4.   | C' programming – DennisRitchie                                                                                                                                                                       |
| 5.   | Programming in 'C' –Venugopal                                                                                                                                                                        |
| 6.   | R. Elmasri, S.B. Navathe, Fundamentals of Database Systems 6th Edition, Pearson Education, 2010.                                                                                                     |

| 7.  | R. Ramakrishanan, J. Gehrke, Database Management Systems 3rd Edition,<br>McGraw-Hill, 2002.                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 8.  | A. Silberschatz, H.F. Korth, S. Sudarshan, Database System Concepts 6th<br>Edition, McGraw Hill,2010.                       |
| 9.  | R.Elmasri,S.B.NavatheDatabaseSystemsModels,Languages,Designandapplic ation Programming, 6th Edition, PearsonEducation,2013. |
|     |                                                                                                                             |
| 10. | SQL, PL/SQL The Programming Language of ORACLE by Ivan Bayross.                                                             |

| Course         | B.Sc.     | Semester             | II        |
|----------------|-----------|----------------------|-----------|
| Course Code    | DSC H3    | Paper No.            | III       |
| Total Credits  | 02        | Total Marks          | 50        |
| Implementation | 2021 - 22 | Contact Hours        | 04 / Week |
| Paper Name     | Pro       | gramming Skills Usin | g 'C'     |

| Course Syllabi:                                                      |    |    |
|----------------------------------------------------------------------|----|----|
| (CR = Credits / IH: Instructional Hours)                             |    |    |
| Modules                                                              | CR | IH |
| Module I : Functions & Pointers                                      |    |    |
| Declaration and defining function, Calling Function (Call by Value & |    |    |
| Call by Reference), return statement, Recursion                      | 01 | 15 |
| 1.2 Storage classes                                                  |    | 15 |
| 1.3Pointers : Introduction, Declaration, Initialization, Pointer     |    |    |
| Arithmetic, Arrays and Pointers, Function and Pointers               |    |    |
| Advantages of Pointer                                                |    |    |
| Module II : Structure and File Handling                              |    |    |
| 2.1 Structure : Introduction, definition, Declaration, Structure     |    |    |
| Variables, Accessing Structure Members, Structure initialization,    | 01 |    |
| Nested Structure, Array of structure                                 | 01 | 15 |
| 2.2 Dynamic Memory Allocation: Introduction, Definition,             |    |    |
| functions of dynamic memory allocation                               |    |    |

| 2.3 File Handling: Defining and opening a file, File opening modes- |  |
|---------------------------------------------------------------------|--|
| read, write, append, closing a file.                                |  |
| Input/Output Operations on file: getc(), putc(), getw(), putw(),    |  |
| <pre>fprintf(), fscanf(), ftell(), fseek(), rewind()</pre>          |  |

#### **Course Outcomes:**

On completion of the course, students will be able to handle programming functions.

Student should understand the basics of structure and pointer. Students should understand runtime file handling mechanisms.

| Course         | B.Sc.     | Semester           | II          |
|----------------|-----------|--------------------|-------------|
| Course Code    | DSC H4    | Paper No.          | IV          |
| Total Credits  | 02        | Total Marks        | 50          |
| Implementation | 2021 - 22 | Contact Hours      | 04 / Week   |
| Paper Name     | Relationa | al Database Manage | ment System |

| Course Syllabi:                                                |    |    |
|----------------------------------------------------------------|----|----|
| (CR = Credits / IH: Instructional Hours)                       |    |    |
| Modules                                                        | CR | IH |
| Module I : Introduction to RDBMS& ER to Relational             |    |    |
| Model                                                          |    |    |
| 1.1 Introduction : Definition, Difference Between DBMS And     |    |    |
| RDBMS, DataTypes                                               |    |    |
| 1.2 Relational constraint: not null, unique, primary, foreign, |    |    |
| check                                                          |    |    |
| 1.3 Relational algebra: Select, Project, Union, Intersection   |    |    |
| 1.4 EER to relational mapping: Concept of Extended Entity      | 01 | 15 |
| Relationship Diagram (EER), Specialization,                    |    |    |
| Generalization, Aggregation                                    |    |    |
| 1.5 Functional dependencies: Primary Key, Super Key,           |    |    |
| Candidate Key, Functional Decomposition.                       |    |    |
| 1.6 Normalization: First NF (1NF), Second NF (2NF), Third      |    |    |
| NF (3NF), and Boyce- Codd NF (BCNF).                           |    |    |
|                                                                |    |    |
| Module II : MySQL                                              |    |    |

| 2.1 MySQL Database : Create, Select, Show, Drop                     |          |         |
|---------------------------------------------------------------------|----------|---------|
| 2.2MySQL Joins : Self Join, Inner join, Outer Join(Left Outer,      |          |         |
| Right Outer, Full Outer)                                            |          |         |
| 2.3 MySQL Sub-Queries : Syntax, subquery with(Comparison            |          |         |
| Operators, In, Not In , from Clause, EXIST, Non-                    |          |         |
| EXIST,All,Any,Some), Co-related Subqueries                          |          |         |
| 2.4 MySQL Views: Create View, Update View, Drop                     | 01       | 15      |
| View, Rename View                                                   |          | 15      |
| 2.5 MySQL Indexes : Create Index, Drop Index, Show Index,           |          |         |
| Unique Index, Clustered Index                                       |          |         |
| 2.6 MySQL Cursor : Declare Cursor, Open Cursor, Fetch               |          |         |
| Cursor, Close Cursor                                                |          |         |
| 2.5 MySQL Trigger : Create Trigger, Show Trigger, Drop              |          |         |
| Trigger, Types of Trigger                                           |          |         |
| Course Outcomes:                                                    |          |         |
| Students should normalize data to its various forms using Sample    | 2.       |         |
| Student should write the sql queries for joining tables, sub query, | Cursor T | riggers |
| etc.                                                                |          |         |
| Student should implement the knowledge of RDBMS into real lit       | fe data  |         |

| Refere | Reference Materials                                                                                                                                                                                      |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        | Books for Reference                                                                                                                                                                                      |  |
| 1.     | "C Programming in an Open Source Paradigm: A Hands on<br>approach", K.S.Oza, S.R.Patil, R.K.Kamat River Publisher Series<br>in Information Science and Technology, Netherland 978-87-93237-<br>67-4,2015 |  |
| 2.     | ANSI C – E.Balgurusamy                                                                                                                                                                                   |  |
| 3.     | Let us C – Y.C.Kanetkar                                                                                                                                                                                  |  |
| 4.     | C' programming – DennisRitchie                                                                                                                                                                           |  |
| 5.     | Programming in 'C' -Venugopal                                                                                                                                                                            |  |
| б.     | R. Elmasri, S.B. Navathe, Fundamentals of Database Systems 6th Edition, Pearson Education, 2010.                                                                                                         |  |
| 7.     | R. Ramakrishanan, J. Gehrke, Database Management Systems                                                                                                                                                 |  |

|    | 3rd Edition, McGraw-Hill, 2002.                                                                       |
|----|-------------------------------------------------------------------------------------------------------|
| 8. | A. Silberschatz, H.F. Korth, S. Sudarshan, Database System<br>Concepts 6th Edition, McGraw Hill,2010. |
| 9. | SQL, PL/SQL The Programming Language of ORACLE by<br>Ivan Bayross                                     |

| Suggested methods of Teaching: |                                                    |
|--------------------------------|----------------------------------------------------|
| i)                             | Offline Traditional Board Teaching                 |
| ii)                            | Power Point Presentation                           |
| iii)                           | Online Teaching on platform of Zoom or Google Meet |

| PRACTICAL PAPER -I                            |                                                                                      |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------|--|
| Based on DSC H1 and DSC H3, DSC H2 and DSC H4 |                                                                                      |  |
|                                               | Practical Experiments Based on DSC H1 And DSC H3                                     |  |
| 1.                                            | WAP to demonstrate use of data types, simple Operators.                              |  |
| 2.                                            | WAP to demonstrate use of Conditional Statements (if, if-else, nested if).           |  |
| 3.                                            | WAP to demonstrate use of Conditional Statement(Switch Case)                         |  |
| 4.                                            | WAP to demonstrate use of Loops (While, for, do-While)                               |  |
| 5.                                            | WAP to demonstrate use of nested loop.                                               |  |
| 6.                                            | WAP to demonstrate use of unconditional control statements (Break,                   |  |
|                                               | Continue, goto)                                                                      |  |
| 7.                                            | WAP to demonstrate use of one dimensional array.                                     |  |
| 8.                                            | WAP to demonstrate use of two dimensional arrays                                     |  |
| 9.                                            | WAP to demonstrate concept of String.                                                |  |
| 10.                                           | WAP to demonstrate use of string functions.                                          |  |
| 11.                                           | WAP to demonstrate writing C programs in modular way (Use of User Defined Functions) |  |
| 12.                                           | WAP to demonstrate concept of calling function (Call by value, call by               |  |
|                                               | reference)                                                                           |  |
| 13.                                           | WAP to demonstrate recursive function.                                               |  |
| 14.                                           | WAP to demonstrate concept of Pointer.                                               |  |
| 15.                                           | WAP to demonstrate concept of Structure.                                             |  |

| 16. | WAP to demonstrate concept of Array of Structure.              |
|-----|----------------------------------------------------------------|
| 17. | WAP to demonstrate concept of dynamic memory allocation.       |
| 18. | WAP to demonstrate concept of file handling.                   |
| 19. | WAP to demonstrate concept of input/output operations on file. |

| Practical Experiments Based on Paper DSC H2 And DSC H4 |                                           |  |  |
|--------------------------------------------------------|-------------------------------------------|--|--|
| Note: MySQL may be used.                               |                                           |  |  |
| 1.                                                     | Practical based on DML, DDL, DQL Commands |  |  |
| 2.                                                     | Practical Based on Use of Operators.      |  |  |
| 3.                                                     | Practical Based on SQL Clauses            |  |  |
| 4.                                                     | Practical Based on Aggregate Functions    |  |  |
| 5.                                                     | Practical Based on use of Constraints.    |  |  |
| 6.                                                     | Practical based on Sub-queries.           |  |  |
| 7.                                                     | Practical based on Joins.                 |  |  |
| 8.                                                     | Practical based on Views.                 |  |  |
| 9.                                                     | Practical based on Index.                 |  |  |
| 10.                                                    | Practical based on cursor.                |  |  |
| 11.                                                    | Practical based on trigger.               |  |  |

#### **Examination Pattern:**

| Q.No. | Nature/Type of Question  | Marks             | Total |
|-------|--------------------------|-------------------|-------|
| 1.    | Multiple Choice Question | Each for 01       | 06    |
|       | (06)                     | Marks             | 00    |
| 2.    | Short Answers(5)         | Each for 02 Marks | 10    |
| 3.    | Solve Any 4 out of 6     | Each for 03 Marks | 12    |
| 4.    | Solve Any 1 out of 2     | Each for 06 Marks | 06    |
| 5.    | Solve Any 1 out of 2     | Each for 06 Marks | 06    |
|       | 40                       |                   |       |

#### 1.1 End Semester Examination Question Paper Pattern : 40 Marks

#### 1.2 Continuous Internal Evaluation(CIE) Pattern : 10 Marks

| MCQ Test(Online/Offline) | 05 Marks |
|--------------------------|----------|
| Oral Test(Viva)          | 05 Marks |
| Total                    | 10 Marks |

#### 1.3 **Practical Examination**

The practical examination in Computer Science is conducted at end of each academic year which will be based on Course DSC H1 and DSC H3, DSC H2 and DSC H4 of 4 hours duration and of 50 maximum marks.

#### • Nature of Practical Examination:

| Paper Name                         | Practical Paper –I       |
|------------------------------------|--------------------------|
| Total No. Of Questions             | 04                       |
| No. Of questions should be attempt | 02                       |
| Each Question                      | 20 Marks(Total 40 Marks) |
| Certified Journal                  | 05 Marks                 |
| Viva Based on Practical            | 05 Marks                 |
| Total Marks                        | 50                       |

- To pass the B.Sc. Part-I,II&III examination, a candidate shall be required to obtain a minimum of 35% of the total Marks in each head of passing.
- There will be a separate head of passing in Theory, internal and Practical courses.